A365400 a(n) = 64 + A000720(n) - A365339(n).
63, 63, 63, 62, 62, 62, 62, 62, 61, 61, 61, 61, 61, 61, 60, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 58, 58, 58, 58, 58, 58, 58, 58, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 56
Offset: 1
Keywords
Links
- Paul Pollack, Carl Pomerance, and Enrique Treviño, Sets of monotonicity for Euler's totient function, preprint. See M(n).
- Paul Pollack, Carl Pomerance, and Enrique Treviño, Sets of monotonicity for Euler's totient function, Ramanujan J. 30 (2013), no. 3, pp. 379-398.
- Terence Tao, Monotone non-decreasing sequences of the Euler totient function, arXiv:2309.02325 [math.NT], 2023.
Programs
-
Julia
# Computes the first N terms of the sequence. using Nemo function A365400List(N) phi = Int64[i for i in 1:N + 1] for i in 2:N + 1 if phi[i] == i for j in i:i:N + 1 phi[j] -= div(phi[j], i) end end end lst = zeros(Int64, N) dyn = zeros(Int64, N) pi = 64 for n in 1:N p = phi[n] nxt = dyn[p] + 1 while p <= N && dyn[p] < nxt dyn[p] = nxt p += 1 end pi += is_prime(n) ? 1 : 0 lst[n] = pi - dyn[n] end return lst end println(A365400List(32000))
-
Python
from bisect import bisect from sympy import totient, primepi def A365400(n): plist, qlist, c = tuple(totient(i) for i in range(1,n+1)), [0]*(n+1), 0 for i in range(n): qlist[a:=bisect(qlist,plist[i],lo=1,hi=c+1,key=lambda x:plist[x])]=i c = max(c,a) return 64+primepi(n)-c # Chai Wah Wu, Sep 06 2023
Comments