cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365403 The sum of the unitary divisors of the largest square dividing n.

This page as a plain text file.
%I A365403 #6 Sep 03 2023 10:46:25
%S A365403 1,1,1,5,1,1,1,5,10,1,1,5,1,1,1,17,1,10,1,5,1,1,1,5,26,1,10,5,1,1,1,
%T A365403 17,1,1,1,50,1,1,1,5,1,1,1,5,10,1,1,17,50,26,1,5,1,10,1,5,1,1,1,5,1,1,
%U A365403 10,65,1,1,1,5,1,1,1,50,1,1,26,5,1,1,1,17,82
%N A365403 The sum of the unitary divisors of the largest square dividing n.
%C A365403 The number of these divisors is A323308(n).
%C A365403 The sum of the unitary divisors of the square root of the largest square dividing n is A365404(n).
%H A365403 Amiram Eldar, <a href="/A365403/b365403.txt">Table of n, a(n) for n = 1..10000</a>
%F A365403 a(n) = A034448(A008833(n)).
%F A365403 a(n) <= A034448(n) with equality if and only if n is a square (A000290).
%F A365403 a(n) >= 1 with equality if and only if n is squarefree (A005117).
%F A365403 Multiplicative with a(p) = 1 and a(p^e) = p^(2*floor(e/2)) + 1 for e >= 2.
%F A365403 Dirichlet g.f.: zeta(s) * zeta(2*s-2) / zeta(4*s-2).
%F A365403 Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = zeta(3/2)/(3*zeta(4)) = 30*zeta(3/2)/Pi^4 = 0.804557969165... .
%t A365403 f[p_, e_] := If[e == 1, 1, p^(2*Floor[e/2]) + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A365403 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] == 1, 1, 1 + f[i,1]^(2*(f[i,2]\2))));}
%Y A365403 Cf. A000290, A005117, A008833, A034448, A323308, A365404.
%Y A365403 Cf. A013662, A078434.
%K A365403 nonn,easy,mult
%O A365403 1,4
%A A365403 _Amiram Eldar_, Sep 03 2023