cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365404 The sum of the unitary divisors of the square root of the largest square dividing n.

This page as a plain text file.
%I A365404 #6 Sep 03 2023 10:46:31
%S A365404 1,1,1,3,1,1,1,3,4,1,1,3,1,1,1,5,1,4,1,3,1,1,1,3,6,1,4,3,1,1,1,5,1,1,
%T A365404 1,12,1,1,1,3,1,1,1,3,4,1,1,5,8,6,1,3,1,4,1,3,1,1,1,3,1,1,4,9,1,1,1,3,
%U A365404 1,1,1,12,1,1,6,3,1,1,1,5,10,1,1,3,1,1
%N A365404 The sum of the unitary divisors of the square root of the largest square dividing n.
%C A365404 The number of these divisors is A323308(n).
%C A365404 The sum of the unitary divisors of the largest square dividing n is A365403(n).
%H A365404 Amiram Eldar, <a href="/A365404/b365404.txt">Table of n, a(n) for n = 1..10000</a>
%F A365404 a(n) = A034448(A000188(n)).
%F A365404 a(n) >= 1 with equality if and only if n is squarefree (A005117).
%F A365404 Multiplicative with a(p) = 1 and a(p^e) = p^floor(e/2) + 1 for e >= 2.
%F A365404 Dirichlet g.f.: zeta(s) * zeta(2*s-1) / zeta(4*s-1).
%F A365404 Sum_{k=1..n} a(k) ~ (n/(2*zeta(3))) * (log(n) + 3*gamma - 1 - 4*zeta'(3)/zeta(3)), where gamma is Euler's constant (A001620).
%t A365404 f[p_, e_] := If[e == 1, 1, p^Floor[e/2] + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A365404 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] == 1, 1, 1 + f[i,1]^(f[i,2]\2)));}
%Y A365404 Cf. A005117, A000188, A034448, A323308, A365403.
%Y A365404 Cf. A001620, A002117, A244115.
%K A365404 nonn,easy,mult
%O A365404 1,4
%A A365404 _Amiram Eldar_, Sep 03 2023