This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365408 #21 Oct 19 2023 19:53:39 %S A365408 9,12,15,18,21,25,27,30,33,35,36,39,40,42,45,48,49,50,51,54,55,56,57, %T A365408 60,63,65,66,69,70,75,77,78,81,84,85,87,90,91,93,95,98,99,100,102,105, %U A365408 108,110,111,114,115,117,119,120,121,123,125,126,129,130,132,133,135,138,140,141,143,144,145,147,150,153 %N A365408 Numbers j whose largest divisor <= sqrt(j) is not a power of 2. %C A365408 Also indices of terms in A033676 that are not a power of 2. %C A365408 Differs from A342082 in not having {24, 72, 80, 96, 112, ...}. - _Hugo Pfoertner_, Oct 15 2023 %H A365408 Paolo Xausa, <a href="/A365408/b365408.txt">Table of n, a(n) for n = 1..10000</a> %t A365408 A365408Q[n_]:=With[{d=Divisors[n]},!IntegerQ[Log2[d[[Ceiling[Length[d]/2]]]]]]; %t A365408 Select[Range[200],A365408Q] (* _Paolo Xausa_, Oct 19 2023 *) %o A365408 (Python) %o A365408 from itertools import count, islice %o A365408 from sympy import divisors %o A365408 def A365408_gen(startvalue=1): # generator of terms >= startvalue %o A365408 return filter(lambda i:(a:=(d:=divisors(i))[len(d)-1>>1])!=1<<a.bit_length()-1,count(max(startvalue,1))) %o A365408 A365408_list = list(islice(A365408_gen(),30)) # _Chai Wah Wu_, Oct 18 2023 %Y A365408 Complement of A365406. %Y A365408 Cf. A033676, A057716, A342082. %K A365408 nonn %O A365408 1,1 %A A365408 _Omar E. Pol_, Oct 14 2023