This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365415 #46 Oct 04 2023 22:25:56 %S A365415 20,371,8091,102127,1061612,12108840,198150340,1929504533 %N A365415 Number of decimal digits of e after its decimal point needed to contain all digit substrings of length n. %C A365415 Length of the shortest prefix of the decimal expansion of e in which every possible digit string of length n occurs. We only consider the digits after the decimal point. %C A365415 It is not known if every natural number appears in the decimal expansion of e. If this is the case, sequence a(n) contains a term for every n. %F A365415 a(n) = A152182(n) + n - 2. %e A365415 a(1) = 20, since 20 is the smallest number of digits in decimal expansion of e in with every digit 0..9 (or, to be more precise, every digit string of length 1) appears: 2.71828182845904523536. %e A365415 a(2) = 371, since the first appearance of the digit string "12" is at positions 370-371 of the decimal expansion of e and the remaining digit strings of length 2 appear at least once before that position. %e A365415 a(3) = 8091, since the first appearance of the digit string "548" is at positions 8089-8091 of the decimal expansion of e and the remaining digit strings of length 3 appear at least once before that position. %e A365415 a(4) = 102127, since the first appearance of the digit string "1769" is at positions 102124-102127 of the decimal expansion of e and the remaining digit strings of length 4 appear at least once before that position. %t A365415 dok = 300000; an = {}; %t A365415 For[li = 1, li <= 3, li++, %t A365415 p = ToString[N[E, dok]]; %t A365415 cyf = {}; par = 0; %t A365415 For[i = 3, i <= dok, i++, %t A365415 If[par == 0, %t A365415 a = StringTake[p, {i, i + li - 1}]; %t A365415 If[MemberQ[cyf, a] == False, cyf = Append[cyf, a]; %t A365415 If[Length[cyf] == 10^li, an = Append[an, i + li - 3]; par = 1]], %t A365415 Break[]] %t A365415 ]]; %t A365415 Print[an] %Y A365415 Cf. A001113, A152182, A332262. %K A365415 base,nonn,more %O A365415 1,1 %A A365415 _Bartlomiej Pawlik_, Sep 07 2023 %E A365415 a(6)-a(8) from _Michael S. Branicky_, Oct 04 2023