cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365474 a(n) = A365339(10^n).

This page as a plain text file.
%I A365474 #28 Sep 04 2025 10:52:43
%S A365474 1,7,34,193,1276,9656,78562,664643,5761519,50847598
%N A365474 a(n) = A365339(10^n).
%C A365474 The Pollack et al. reference lists a(4)-a(7) and conjectures that A365339(n) = A000720(n)+64 for n >= 31957 which in turn implies the conjecture that a(n) = A006880(n)+64 for n >= 5.
%H A365474 Thomas Bloom, <a href="https://www.erdosproblems.com/49">Problem 49</a>, Erdős Problems.
%H A365474 Paul Pollack, Carl Pomerance, and Enrique Treviño, <a href="https://math.dartmouth.edu/~carlp/MonotonePhi.pdf">Sets of monotonicity for Euler's totient function</a>, preprint. See M(n).
%H A365474 Paul Pollack, Carl Pomerance, and Enrique Treviño, <a href="https://doi.org/10.1007/s11139-012-9386-6">Sets of monotonicity for Euler's totient function</a>, Ramanujan J. 30 (2013), no. 3, pp. 379-398.
%H A365474 Terence Tao, <a href="https://arxiv.org/abs/2309.02325">Monotone non-decreasing sequences of the Euler totient function</a>, arXiv:2309.02325 [math.NT], 2023.
%H A365474 Terence Tao, <a href="https://github.com/teorth/erdosproblems/blob/main/README.md#table">Erdős problem database</a>, see no. 49.
%F A365474 a(n) = A006880(n)+64 for n >= 5 (conjectured).
%o A365474 (Python)
%o A365474 from bisect import bisect
%o A365474 from sympy import totient
%o A365474 def A365474(n):
%o A365474     m = 10**n
%o A365474     plist, qlist, c = tuple(totient(i) for i in range(1,m+1)), [0]*(m+1), 0
%o A365474     for i in range(m):
%o A365474         qlist[a:=bisect(qlist,plist[i],lo=1,hi=c+1,key=lambda x:plist[x])]=i
%o A365474         c = max(c,a)
%o A365474     return c
%Y A365474 Cf. A000010, A000720, A006880, A365339.
%K A365474 nonn,hard,more,changed
%O A365474 0,2
%A A365474 _Chai Wah Wu_, Sep 04 2023