A365475 a(n) is the first odd prime p such that A000120((2^n-1)*p) = n * A000120(p).
3, 5, 17, 17, 257, 257, 257, 257, 65537, 65537, 65537, 65537, 65537, 65537, 65537, 65537, 4398054899713, 4398054899713, 4398054899713, 1125899915231233, 1125899915231233, 1125899915231233, 1125899915231233, 2251799847239681, 2251799847239681, 1152921513196781569, 1152921513196781569
Offset: 1
Examples
a(3) = 17 because A000120((2^3-1) * 17) = A000120(119) = 6 = 3 * A000120(17).
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A000120.
Programs
-
Maple
f:= proc(m) local S,d,j,r,q; S[0]:= [1]; for d from 1 do S[d]:= NULL; for j from 0 to d-m do for r in S[j] do q:= r + 2^d; if isprime(q) then return q fi; S[d]:= S[d],q; od; od; S[d]:= [S[d]]; od; end proc: map(f, [$1..30]);
Comments