A365476 a(n) is the minimum of A000120(k)*A000120(A071904(n)/k) for divisors k of the n-th odd composite number A071904(n) other than 1 and A071904(n).
4, 4, 6, 4, 4, 6, 6, 6, 4, 9, 4, 6, 6, 6, 6, 8, 6, 9, 4, 4, 8, 9, 10, 6, 4, 6, 6, 8, 6, 6, 9, 6, 6, 8, 9, 8, 10, 9, 8, 6, 4, 10, 8, 12, 4, 9, 6, 6, 10, 10, 6, 6, 6, 4, 6, 12, 6, 6, 9, 8, 8, 15, 6, 6, 6, 6, 10, 10, 6, 6, 9, 8, 12, 8, 9, 8, 8, 8, 9, 9, 10, 8, 9, 4, 6, 10, 4, 12, 12, 8, 10, 10, 6
Offset: 1
Examples
a(9) = 4 because A071904(9) = 45 = 3 * 15 = 5 * 9 with A000120(3) * A000120(15) = 2 * 4 = 8 and A000120(5) * A000120(9) = 2 * 2 = 4.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
g:= proc(n) convert(convert(n, base, 2), `+`) end proc: f:= proc(n) local t, r; min(seq(g(t)*g(n/t), t = numtheory:-divisors(n) minus {1,n})) end proc: map(f, remove(isprime, [seq(i,i=3..1000,2)]));
-
Python
from sympy import primepi, divisors def A365476(n): if n == 1: return 4 m, k = n, primepi(n) + n + (n>>1) while m != k: m, k = k, primepi(k) + n + (k>>1) return min(int(d).bit_count()*int(m//d).bit_count() for d in divisors(m,generator=True) if 1
Chai Wah Wu, Aug 02 2024
Comments