cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365479 The sum of unitary divisors of the smallest square divisible by n.

This page as a plain text file.
%I A365479 #12 Sep 06 2023 01:10:03
%S A365479 1,5,10,5,26,50,50,17,10,130,122,50,170,250,260,17,290,50,362,130,500,
%T A365479 610,530,170,26,850,82,250,842,1300,962,65,1220,1450,1300,50,1370,
%U A365479 1810,1700,442,1682,2500,1850,610,260,2650,2210,170,50,130,2900,850,2810,410
%N A365479 The sum of unitary divisors of the smallest square divisible by n.
%C A365479 The number of unitary divisors of the smallest square divisible by n is the same as the number of unitary divisors of n, A034444(n).
%H A365479 Amiram Eldar, <a href="/A365479/b365479.txt">Table of n, a(n) for n = 1..10000</a>
%F A365479 a(n) = A034448(A053143(n)).
%F A365479 Multiplicative with a(p^e) = p^(e + (e mod 2)) + 1.
%F A365479 Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-2) - 1/p^(2*s-2) - 1/p^(3*s-2)).
%F A365479 Sum_{k=1..n} a(k) ~ c * n^3, where c = (Pi^2/45) * zeta(3) * Product_{p prime} (1 - 1/p^4 + 1/p^5 - 1/p^6) = 0.248414056414... .
%t A365479 f[p_, e_] := 1 + p^(e + Mod[e, 2]); a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100]
%o A365479 (PARI) a(n) = {my(f = factor(n)); prod(i=1, #f~, f[i,1]^(f[i,2] + f[i,2]%2) + 1);}
%o A365479 (Python)
%o A365479 from math import prod
%o A365479 from sympy import factorint
%o A365479 def A365479(n): return prod(p**(e+(e&1))+1 for p,e in factorint(n).items()) # _Chai Wah Wu_, Sep 05 2023
%Y A365479 Cf. A002117, A034444, A034448, A053143, A365346, A365480, A365481.
%K A365479 nonn,easy,mult
%O A365479 1,2
%A A365479 _Amiram Eldar_, Sep 05 2023