cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365480 The sum of unitary divisors of the smallest exponentially odd number that is divisible by n.

This page as a plain text file.
%I A365480 #12 Sep 06 2023 01:24:07
%S A365480 1,3,4,9,6,12,8,9,28,18,12,36,14,24,24,33,18,84,20,54,32,36,24,36,126,
%T A365480 42,28,72,30,72,32,33,48,54,48,252,38,60,56,54,42,96,44,108,168,72,48,
%U A365480 132,344,378,72,126,54,84,72,72,80,90,60,216,62,96,224,129,84
%N A365480 The sum of unitary divisors of the smallest exponentially odd number that is divisible by n.
%C A365480 The number of unitary divisors of the smallest exponentially odd number that is divisible by n is the same as the number of unitary divisors of n, A034444(n).
%H A365480 Amiram Eldar, <a href="/A365480/b365480.txt">Table of n, a(n) for n = 1..10000</a>
%H A365480 Vaclav Kotesovec, <a href="/A365480/a365480.jpg">Graph - the asymptotic ratio (1000000 terms)</a>
%F A365480 a(n) = A034448(A356191(n)).
%F A365480 Multiplicative with a(p^e) = p^(e + 1 - (e mod 2)) + 1.
%F A365480 Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-1) + 1/p^(2*s-3) - 1/p^(2*s-2) - 1/p^(2*s-1) - 1/p^(3*s-3)).
%F A365480 From _Vaclav Kotesovec_, Sep 05 2023: (Start)
%F A365480 Dirichlet g.f.: zeta(s) * zeta(s-1) * zeta(2*s-2) * zeta(2*s-3) * Product_{p prime} (1 - p^(7-6*s) - p^(5-5*s) + p^(7-5*s) + 2*p^(4-4*s) + 2*p^(5-4*s) - p^(6-4*s) + p^(2-3*s) - p^(4-3*s) - p^(1-2*s) - 2*p^(2-2*s)).
%F A365480 Let f(s) = Product_{p prime} (1 - p^(7-6*s) - p^(5-5*s) + p^(7-5*s) + 2*p^(4-4*s) + 2*p^(5-4*s) - p^(6-4*s) + p^(2-3*s) - p^(4-3*s) - p^(1-2*s) - 2*p^(2-2*s)).
%F A365480 Sum_{k=1..n} a(k) ~ n^2 * Pi^4 * f(2) / 144 * (log(n) + 3*gamma - 1/2 + 18*zeta'(2)/Pi^2 + f'(2)/f(2)), where
%F A365480 f(2) = Product_{p prime} (1 - 4/p^2 + 2/p^3 + 3/p^4 - 2/p^5) = 0.17432153313226756485612314112586411632220602294650993976966957787608316...,
%F A365480 f'(2) = f(2) * Sum_{p prime} 11 * log(p) / (p^2 + p - 2) = f(2) * 5.12969275236278527949034734003948649118572887258486718244613616120875581...
%F A365480 and gamma is the Euler-Mascheroni constant A001620. (End)
%t A365480 f[p_, e_] := p^(e + 1 - Mod[e, 2]) + 1; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100]
%o A365480 (PARI) a(n) = {my(f = factor(n)); prod(i=1, #f~, f[i,1]^(f[i,2] + 1 - f[i,2]%2) + 1);}
%Y A365480 Cf. A034444, A034448, A356191, A365349, A365479, A365481.
%K A365480 nonn,easy,mult
%O A365480 1,2
%A A365480 _Amiram Eldar_, Sep 05 2023