cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365481 The sum of unitary divisors of the smallest number whose square is divisible by n.

This page as a plain text file.
%I A365481 #13 Sep 05 2023 19:13:24
%S A365481 1,3,4,3,6,12,8,5,4,18,12,12,14,24,24,5,18,12,20,18,32,36,24,20,6,42,
%T A365481 10,24,30,72,32,9,48,54,48,12,38,60,56,30,42,96,44,36,24,72,48,20,8,
%U A365481 18,72,42,54,30,72,40,80,90,60,72,62,96,32,9,84,144,68,54,96
%N A365481 The sum of unitary divisors of the smallest number whose square is divisible by n.
%C A365481 The number of unitary divisors of the smallest number whose square is divisible by n is the same as the number of unitary divisors of n, A034444(n).
%H A365481 Amiram Eldar, <a href="/A365481/b365481.txt">Table of n, a(n) for n = 1..10000</a>
%F A365481 a(n) = A034448(A019554(n)).
%F A365481 Multiplicative with a(p^e) = p^(ceiling(e/2)) + 1.
%F A365481 Dirichlet g.f.: zeta(s) * zeta(2*s-1) * Product_{p prime} (1 + 1/p^(s-1) - 1/p^(2*s-1) - 1/p^(3*s-1)).
%F A365481 Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * zeta(2) * zeta(3) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4 - 1/p^5 + 1/p^6) = 0.515959523197... .
%t A365481 f[p_, e_] := p^Ceiling[e/2] + 1; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100]
%o A365481 (PARI) a(n) = {my(f = factor(n)); prod(i=1, #f~, f[i,1]^ceil(f[i,2]/2) + 1);}
%o A365481 (Python)
%o A365481 from math import prod
%o A365481 from sympy import factorint
%o A365481 def A365481(n): return prod(p**((e>>1)+(e&1))+1 for p,e in factorint(n).items()) # _Chai Wah Wu_, Sep 05 2023
%Y A365481 Cf. A002117, A013661, A019554, A034444, A034448, A365347, A365479, A365480.
%K A365481 nonn,easy,mult
%O A365481 1,2
%A A365481 _Amiram Eldar_, Sep 05 2023