cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365487 The number of divisors of the largest cube dividing n.

This page as a plain text file.
%I A365487 #8 Sep 06 2023 01:22:28
%S A365487 1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,4,1,1,4,1,1,1,1,4,1,1,
%T A365487 1,1,1,1,1,4,1,1,1,1,1,1,1,4,1,1,1,1,1,4,1,4,1,1,1,1,1,1,1,7,1,1,1,1,
%U A365487 1,1,1,4,1,1,1,1,1,1,1,4,4,1,1,1,1,1,1
%N A365487 The number of divisors of the largest cube dividing n.
%C A365487 The number of divisors of the cube root of the largest cube dividing n, A053150(n), is A061704(n).
%H A365487 Amiram Eldar, <a href="/A365487/b365487.txt">Table of n, a(n) for n = 1..10000</a>
%F A365487 a(n) = A000005(A008834(n)).
%F A365487 Multiplicative with a(p^e) = 3*floor(e/3) + 1.
%F A365487 a(n) = 1 if and only if n is cubefree (A004709).
%F A365487 a(n) <= A000005(n) with equality if and only if n is a cube (A000578).
%F A365487 Dirichlet g.f.: zeta(s) * zeta(3*s) * Product_{p prime} (1 + 2/p^(3*s)).
%F A365487 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(3) * Product_{p prime} (1 + 2/p^3) = 1.6552343865608... .
%t A365487 f[p_, e_] := 3*Floor[e/3] + 1; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100]
%o A365487 (PARI) a(n) = vecprod(apply(x -> 3*(x\3) + 1, factor(n)[, 2]));
%Y A365487 Cf. A000005, A000578, A004709, A008834, A053150, A061704.
%K A365487 nonn,easy,mult
%O A365487 1,8
%A A365487 _Amiram Eldar_, Sep 05 2023