cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365488 The number of divisors of the smallest number whose cube is divisible by n.

This page as a plain text file.
%I A365488 #17 Sep 15 2024 12:32:36
%S A365488 1,2,2,2,2,4,2,2,2,4,2,4,2,4,4,3,2,4,2,4,4,4,2,4,2,4,2,4,2,8,2,3,4,4,
%T A365488 4,4,2,4,4,4,2,8,2,4,4,4,2,6,2,4,4,4,2,4,4,4,4,4,2,8,2,4,4,3,4,8,2,4,
%U A365488 4,8,2,4,2,4,4,4,4,8,2,6,3,4,2,8,4,4,4
%N A365488 The number of divisors of the smallest number whose cube is divisible by n.
%C A365488 First differs from A365171 at n = 32.
%C A365488 The number of divisors of the smallest cube divisible by n, A053149(n), is A365489(n).
%H A365488 Amiram Eldar, <a href="/A365488/b365488.txt">Table of n, a(n) for n = 1..10000</a>
%H A365488 Vaclav Kotesovec, <a href="/A365488/a365488.jpg">Graph - the asymptotic ratio (100000 terms)</a>
%F A365488 a(n) = A000005(A019555(n)).
%F A365488 Multiplicative with a(p^e) = ceiling(e/3) + 1.
%F A365488 a(n) <= A000005(n) with equality if and only if n is squarefree  (A005117).
%F A365488 Dirichlet g.f.: zeta(s) * zeta(3*s) * Product_{p prime} (1 + 1/p^s - 1/p^(3*s)).
%F A365488 From _Vaclav Kotesovec_, Sep 06 2023: (Start)
%F A365488 Dirichlet g.f.: zeta(s)^2 * zeta(3*s) * Product_{p prime} (1 - 1/p^(2*s) - 1/p^(3*s) + 1/p^(4*s)).
%F A365488 Let f(s) = Product_{p prime} (1 - 1/p^(2*s) - 1/p^(3*s) + 1/p^(4*s)).
%F A365488 Sum_{k=1..n} a(k) ~ zeta(3) * f(1) * n * (log(n) + 2*gamma - 1 + 3*zeta'(3)/zeta(3) + f'(1)/f(1)), where
%F A365488 f(1) = Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = 0.5358961538283379998085026313185459506482223745141452711510108346133288...,
%F A365488 f'(1) = f(1) * Sum_{p prime} (-4 + 3*p + 2*p^2) * log(p) / (1 - p - p^2 + p^4) = f(1) * 1.4525924794451595590371439593828547341482465114411929136723476679...
%F A365488 and gamma is the Euler-Mascheroni constant A001620. (End)
%t A365488 f[p_, e_] := Ceiling[e/3] + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%t A365488 With[{c=Range[200]^3},Table[DivisorSigma[0,Surd[SelectFirst[c,Mod[#,n]==0&],3]],{n,90}]] (* _Harvey P. Dale_, Sep 15 2024 *)
%o A365488 (PARI) a(n) = vecprod(apply(x -> (x-1)\3 + 2, factor(n)[, 2]));
%Y A365488 Cf. A000005, A005117, A019555, A053149, A365171, A365489, A365498.
%K A365488 nonn,easy,mult
%O A365488 1,2
%A A365488 _Amiram Eldar_, Sep 05 2023