cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365490 The number of divisors of the largest 4th power dividing n.

This page as a plain text file.
%I A365490 #12 Aug 08 2024 14:28:08
%S A365490 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,1,1,
%T A365490 1,1,1,1,1,1,1,1,1,1,1,1,1,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,1,1,1,1,
%U A365490 1,1,1,1,1,1,1,1,1,1,1,5,5,1,1,1,1,1,1
%N A365490 The number of divisors of the largest 4th power dividing n.
%C A365490 The number of divisors of the 4th root of the largest 4th power dividing n, A053164(n), is A063775(n).
%H A365490 Amiram Eldar, <a href="/A365490/b365490.txt">Table of n, a(n) for n = 1..10000</a>
%F A365490 a(n) = A000005(A008835(n)).
%F A365490 Multiplicative with a(p^e) = 4*floor(e/4) + 1.
%F A365490 a(n) = 1 if and only if n is a biquadratefree number (A046100).
%F A365490 a(n) <= A000005(n) with equality if and only if n is a fourth power (A000583).
%F A365490 Dirichlet g.f.: zeta(s) * zeta(4*s) * Product_{p prime} (1 + 3/p^(4*s)).
%F A365490 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(4) * Product_{p prime} (1 + 3/p^4) = 1.3414590511076... . In general, the asymptotic mean of the number of divisors of the largest k-th power dividing n is zeta(k) * Product_{p prime} (1 + (k-1)/p^k).
%t A365490 f[p_, e_] := 4*Floor[e/4] + 1; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100]
%o A365490 (PARI) a(n) = vecprod(apply(x -> 4*(x\4) + 1, factor(n)[, 2]));
%o A365490 (Python)
%o A365490 from math import prod
%o A365490 from sympy import factorint
%o A365490 def A365490(n): return prod(e&-4|1 for e in factorint(n).values()) # _Chai Wah Wu_, Aug 08 2024
%Y A365490 Cf. A000005, A000583, A046100, A008835, A053164, A063775.
%K A365490 nonn,easy,mult
%O A365490 1,16
%A A365490 _Amiram Eldar_, Sep 05 2023