cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365491 The number of divisors of the smallest number whose 4th power is divisible by n.

This page as a plain text file.
%I A365491 #20 Jul 09 2024 16:52:46
%S A365491 1,2,2,2,2,4,2,2,2,4,2,4,2,4,4,2,2,4,2,4,4,4,2,4,2,4,2,4,2,8,2,3,4,4,
%T A365491 4,4,2,4,4,4,2,8,2,4,4,4,2,4,2,4,4,4,2,4,4,4,4,4,2,8,2,4,4,3,4,8,2,4,
%U A365491 4,8,2,4,2,4,4,4,4,8,2,4,2,4,2,8,4,4,4
%N A365491 The number of divisors of the smallest number whose 4th power is divisible by n.
%C A365491 First differs from A365210 at n = 25 and from A034444 at n = 32.
%C A365491 The number of divisors of the smallest 4th divisible by n, A053167(n), is A365492(n).
%H A365491 Amiram Eldar, <a href="/A365491/b365491.txt">Table of n, a(n) for n = 1..10000</a>
%H A365491 Vaclav Kotesovec, <a href="/A365491/a365491.jpg">Graph - the asymptotic ratio (100000 terms)</a>.
%F A365491 a(n) = A000005(A053166(n)).
%F A365491 Multiplicative with a(p^e) = ceiling(e/4) + 1.
%F A365491 a(n) <= A000005(n) with equality if and only if n is squarefree (A005117).
%F A365491 Dirichlet g.f.: zeta(s) * zeta(4*s) * Product_{p prime} (1 + 1/p^s - 1/p^(4*s)).
%F A365491 From _Vaclav Kotesovec_, Sep 06 2023: (Start)
%F A365491 Dirichlet g.f.: zeta(s)^2 * zeta(4*s) * Product_{p prime} (1 - 1/p^(2*s) - 1/p^(4*s) + 1/p^(5*s)).
%F A365491 Let f(s) = Product_{p prime} (1 - 1/p^(2*s) - 1/p^(4*s) + 1/p^(5*s)).
%F A365491 Sum_{k=1..n} a(k) ~ zeta(4) * f(1) * n * (log(n) + 2*gamma - 1 + 4*zeta'(4)/zeta(4) + f'(1)/f(1)), where
%F A365491 f(1) = Product_{p prime} (1 - 1/p^2 - 1/p^4 + 1/p^5) = 0.57615273538566705952061107826411727540624711680289618854325028459572487...,
%F A365491 f'(1) = f(1) * Sum_{p prime} (-5 + 4*p + 2*p^3) * log(p) / (1 - p - p^3 + p^5) = f(1) * 1.3011434396559802378314782600747661399223385669839998680418996210...
%F A365491 and gamma is the Euler-Mascheroni constant A001620. (End)
%F A365491 a(n) = A322483(A019554(n)) (the number of exponentially odd divisors of the smallest number whose square is divisible by n). - _Amiram Eldar_, Sep 08 2023
%t A365491 f[p_, e_] := Ceiling[e/4] + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%t A365491 With[{c=Range[100]^4},Table[DivisorSigma[0,Surd[SelectFirst[c,Mod[#,n]==0&],4]],{n,90}]] (* _Harvey P. Dale_, Jul 09 2024 *)
%o A365491 (PARI) a(n) = vecprod(apply(x -> (x-1)\4 + 2, factor(n)[, 2]));
%Y A365491 Cf. A000005, A001620, A005117, A053166, A053167, A365492, A365499.
%Y A365491 Cf. A019554, A034444, A322483, A365210.
%K A365491 nonn,easy,mult
%O A365491 1,2
%A A365491 _Amiram Eldar_, Sep 05 2023