This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365491 #20 Jul 09 2024 16:52:46 %S A365491 1,2,2,2,2,4,2,2,2,4,2,4,2,4,4,2,2,4,2,4,4,4,2,4,2,4,2,4,2,8,2,3,4,4, %T A365491 4,4,2,4,4,4,2,8,2,4,4,4,2,4,2,4,4,4,2,4,4,4,4,4,2,8,2,4,4,3,4,8,2,4, %U A365491 4,8,2,4,2,4,4,4,4,8,2,4,2,4,2,8,4,4,4 %N A365491 The number of divisors of the smallest number whose 4th power is divisible by n. %C A365491 First differs from A365210 at n = 25 and from A034444 at n = 32. %C A365491 The number of divisors of the smallest 4th divisible by n, A053167(n), is A365492(n). %H A365491 Amiram Eldar, <a href="/A365491/b365491.txt">Table of n, a(n) for n = 1..10000</a> %H A365491 Vaclav Kotesovec, <a href="/A365491/a365491.jpg">Graph - the asymptotic ratio (100000 terms)</a>. %F A365491 a(n) = A000005(A053166(n)). %F A365491 Multiplicative with a(p^e) = ceiling(e/4) + 1. %F A365491 a(n) <= A000005(n) with equality if and only if n is squarefree (A005117). %F A365491 Dirichlet g.f.: zeta(s) * zeta(4*s) * Product_{p prime} (1 + 1/p^s - 1/p^(4*s)). %F A365491 From _Vaclav Kotesovec_, Sep 06 2023: (Start) %F A365491 Dirichlet g.f.: zeta(s)^2 * zeta(4*s) * Product_{p prime} (1 - 1/p^(2*s) - 1/p^(4*s) + 1/p^(5*s)). %F A365491 Let f(s) = Product_{p prime} (1 - 1/p^(2*s) - 1/p^(4*s) + 1/p^(5*s)). %F A365491 Sum_{k=1..n} a(k) ~ zeta(4) * f(1) * n * (log(n) + 2*gamma - 1 + 4*zeta'(4)/zeta(4) + f'(1)/f(1)), where %F A365491 f(1) = Product_{p prime} (1 - 1/p^2 - 1/p^4 + 1/p^5) = 0.57615273538566705952061107826411727540624711680289618854325028459572487..., %F A365491 f'(1) = f(1) * Sum_{p prime} (-5 + 4*p + 2*p^3) * log(p) / (1 - p - p^3 + p^5) = f(1) * 1.3011434396559802378314782600747661399223385669839998680418996210... %F A365491 and gamma is the Euler-Mascheroni constant A001620. (End) %F A365491 a(n) = A322483(A019554(n)) (the number of exponentially odd divisors of the smallest number whose square is divisible by n). - _Amiram Eldar_, Sep 08 2023 %t A365491 f[p_, e_] := Ceiling[e/4] + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] %t A365491 With[{c=Range[100]^4},Table[DivisorSigma[0,Surd[SelectFirst[c,Mod[#,n]==0&],4]],{n,90}]] (* _Harvey P. Dale_, Jul 09 2024 *) %o A365491 (PARI) a(n) = vecprod(apply(x -> (x-1)\4 + 2, factor(n)[, 2])); %Y A365491 Cf. A000005, A001620, A005117, A053166, A053167, A365492, A365499. %Y A365491 Cf. A019554, A034444, A322483, A365210. %K A365491 nonn,easy,mult %O A365491 1,2 %A A365491 _Amiram Eldar_, Sep 05 2023