cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365494 a(n) is the smallest number which can be represented as the sum of n distinct n-almost primes in exactly n ways, or -1 if no such number exists.

This page as a plain text file.
%I A365494 #27 Jun 11 2025 01:01:29
%S A365494 2,19,65,190,440,1160,2896,7072,16832,40064,90752,208640,476160,
%T A365494 1082880,2398208,5310464,11694080,25616384,56475648,122388480,
%U A365494 266010624,575012864,1245446144,2699034624,5779750912,12296650752,26377977856,55855546368,118656860160,255458279424,531669975040
%N A365494 a(n) is the smallest number which can be represented as the sum of n distinct n-almost primes in exactly n ways, or -1 if no such number exists.
%H A365494 David A. Corneth, <a href="/A365494/b365494.txt">Table of n, a(n) for n = 1..50</a>
%H A365494 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AlmostPrime.html">Almost Prime</a>.
%e A365494 For n = 2: 19 = 2*2 + 3*5 = 3*3 + 2*5.
%p A365494 f:= proc(n) uses priqueue; local pq, S, t,x,y,k, i, p, v, R;
%p A365494      initialize(pq);
%p A365494      insert([-2^n, 2$n],pq);
%p A365494      S[0]:= 1:
%p A365494      for i from 1 to n do S[i]:= 0 od:
%p A365494      do
%p A365494        t:= extract(pq);
%p A365494        x:= -t[1];
%p A365494        for i from n to 1 by -1 do
%p A365494          S[i]:= expand(S[i] + S[i-1] * y^x);
%p A365494        od;
%p A365494        if type(S[n],`+`) then
%p A365494          R:= select(t -> degree(t,y) < x and eval(t,y=1) = n, convert(S[n],list));
%p A365494          if R <> [] then return min(map(t -> degree(t,y),R)) fi;
%p A365494        fi;
%p A365494        p:= nextprime(t[-1]);
%p A365494        for i from n+1 to 2 by -1 while t[i] = t[-1] do
%p A365494         v:= x*(p/t[-1])^(n+2-i);
%p A365494         insert([-v, op(t[2..i-1]), p$(n+2-i)], pq)
%p A365494        od;
%p A365494      od;
%p A365494 end proc:
%p A365494 map(f, [$1..19]); # _Robert Israel_, Jun 10 2025
%Y A365494 Cf. A091538, A365493.
%K A365494 nonn
%O A365494 1,1
%A A365494 _Ilya Gutkovskiy_, Sep 07 2023
%E A365494 a(5)-a(19) from _Robert Israel_, Jun 10 2025
%E A365494 More terms from _David A. Corneth_, Jun 10 2025