cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365499 Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^s - 1/p^(4*s)).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 4, 1, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 2, 4, 2, 8, 2, 1, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 2, 2, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 8, 2, 4, 4, 1, 4, 8, 2, 4, 4, 8, 2, 4, 2, 4, 4, 4, 4, 8, 2, 2, 1, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 06 2023

Keywords

Comments

The number of unitary divisors of n that are biquadratefree numbers (A046100). - Amiram Eldar, Sep 06 2023

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e <= 3, 2, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 06 2023 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1-X) * (1 + X - X^4))[n], ", "))

Formula

Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^(2*s) - 1/p^(4*s) + 1/p^(5*s)).
Let f(s) = Product_{p prime} (1 - 1/p^(2*s) - 1/p^(4*s) + 1/p^(5*s)).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 1/p^2 - 1/p^4 + 1/p^5) = 0.576152735385667059520611078264117275406247116802896188543250284595724...,
f'(1) = f(1) * Sum_{p prime} (-5 + 4*p + 2*p^3) * log(p) / (1 - p - p^3 + p^5) = f(1) * 1.30114343965598023783147826007476613992233856698399986804189962...
and gamma is the Euler-Mascheroni constant A001620.
Multiplicative with a(p^e) = 2 if e <= 3, and 1 otherwise. - Amiram Eldar, Sep 06 2023