A365508
Number of n-vertex binary trees that do not contain 0[0(0[0(00)])] as a subtree.
Original entry on oeis.org
1, 2, 5, 14, 41, 123, 375, 1157, 3603, 11304, 35683, 113219, 360805, 1154140
Offset: 1
- CombOS - Combinatorial Object Server, Generate binary trees
- Michael Dairyko, Lara Pudwell, Samantha Tyner, and Casey Wynn, Non-contiguous pattern avoidance in binary trees, arXiv:1203.0795 [math.CO], 2012.
- Michael Dairyko, Lara Pudwell, Samantha Tyner, and Casey Wynn, Non-contiguous pattern avoidance in binary trees, Electron. J. Combin. 19 (2012), no. 3, Paper 22, 21 pp. MR2967227.
- Petr Gregor, Torsten Mütze, and Namrata, Combinatorial generation via permutation languages. VI. Binary trees, arXiv:2306.08420 [cs.DM], 2023.
- Petr Gregor, Torsten Mütze, and Namrata, Pattern-Avoiding Binary Trees-Generation, Counting, and Bijections, Leibniz Int'l Proc. Informatics (LIPIcs), 34th Int'l Symp. Algor. Comp. (ISAAC 2023). See pp. 33.12, 33.13.
- Eric S. Rowland, Pattern avoidance in binary trees, arXiv:0809.0488 [math.CO], 2010.
- Eric S. Rowland, Pattern avoidance in binary trees, J. Comb. Theory A 117 (6) (2010) 741-758.
Cf.
A007051 for pattern 0[0[0[0[00]]]], i.e., same tree shape, but all edges non-contiguous.
Cf.
A036766 for pattern 0(0(0(0(00)))), i.e., same tree shape, but all edges contiguous.
A365509
Number of n-vertex binary trees that do not contain 0(0[0(0(00))]) as a subtree.
Original entry on oeis.org
1, 2, 5, 14, 41, 124, 383, 1202, 3819, 12255, 39651, 129190, 423469, 1395425
Offset: 1
- CombOS - Combinatorial Object Server, Generate binary trees
- Michael Dairyko, Lara Pudwell, Samantha Tyner, and Casey Wynn, Non-contiguous pattern avoidance in binary trees, arXiv:1203.0795 [math.CO], 2012.
- Michael Dairyko, Lara Pudwell, Samantha Tyner, and Casey Wynn, Non-contiguous pattern avoidance in binary trees, Electron. J. Combin. 19 (2012), no. 3, Paper 22, 21 pp. MR2967227.
- Petr Gregor, Torsten Mütze, and Namrata, Combinatorial generation via permutation languages. VI. Binary trees, arXiv:2306.08420 [cs.DM], 2023.
- Petr Gregor, Torsten Mütze, and Namrata, Pattern-Avoiding Binary Trees-Generation, Counting, and Bijections, Leibniz Int'l Proc. Informatics (LIPIcs), 34th Int'l Symp. Algor. Comp. (ISAAC 2023). See pp. 33.12, 33.13.
- Eric S. Rowland, Pattern avoidance in binary trees, arXiv:0809.0488 [math.CO], 2010.
- Eric S. Rowland, Pattern avoidance in binary trees, J. Comb. Theory A 117 (6) (2010) 741-758.
Cf.
A007051 for pattern 0[0[0[0[00]]]], i.e., same tree shape, but all edges non-contiguous.
Cf.
A036766 for pattern 0(0(0(0(00)))), i.e., same tree shape, but all edges contiguous.
Showing 1-2 of 2 results.
Comments