A365515 Table read by antidiagonals upward: the n-th row gives the lexicographically earliest infinite B_n sequence starting from 0.
0, 0, 1, 0, 1, 2, 0, 1, 3, 3, 0, 1, 4, 7, 4, 0, 1, 5, 13, 12, 5, 0, 1, 6, 21, 32, 20, 6, 0, 1, 7, 31, 55, 71, 30, 7, 0, 1, 8, 43, 108, 153, 124, 44, 8, 0, 1, 9, 57, 154, 366, 368, 218, 65, 9, 0, 1, 10, 73, 256, 668, 926, 856, 375, 80, 10, 0, 1, 11, 91, 333, 1153, 2214, 2286, 1424, 572, 96, 11
Offset: 1
Examples
Table begins: n\k | 1 2 3 4 5 6 7 8 9 ----+--------------------------------------------------- 1 | 0, 1, 2, 3, 4, 5, 6, 7, 8, ... 2 | 0, 1, 3, 7, 12, 20, 30, 44, 65, ... 3 | 0, 1, 4, 13, 32, 71, 124, 218, 375, ... 4 | 0, 1, 5, 21, 55, 153, 368, 856, 1424, ... 5 | 0, 1, 6, 31, 108, 366, 926, 2286, 5733, ... 6 | 0, 1, 7, 43, 154, 668, 2214, 6876, 16864, ... 7 | 0, 1, 8, 57, 256, 1153, 4181, 14180, 47381, ... 8 | 0, 1, 9, 73, 333, 1822, 8043, 28296, 102042, ... 9 | 0, 1, 10, 91, 500, 3119, 13818, 59174, 211135, ...
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..242
- Eric Weisstein's World of Mathematics, B2 Sequence.
Crossrefs
Programs
-
Python
from itertools import count, islice, combinations_with_replacement def A365515_gen(): # generator of terms asets, alists, klist = [set()], [[]], [0] while True: for i in range(len(klist)-1,-1,-1): kstart, alist, aset = klist[i], alists[i], asets[i] for k in count(kstart): bset = set() for d in combinations_with_replacement(alist+[k],i): if (m:=sum(d)+k) in aset: break bset.add(m) else: yield k alists[i].append(k) klist[i] = k+1 asets[i].update(bset) break klist.append(0) asets.append(set()) alists.append([]) A365515_list = list(islice(A365515_gen(),30))
Formula
a(n) = A347570(n)-1.
Comments