A365523 Decimal expansion of 6*log(2) - 4.
1, 5, 8, 8, 8, 3, 0, 8, 3, 3, 5, 9, 6, 7, 1, 8, 5, 6, 5, 0, 3, 3, 9, 2, 7, 2, 8, 7, 4, 9, 0, 5, 9, 4, 0, 8, 4, 5, 3, 0, 0, 0, 8, 0, 6, 1, 6, 1, 5, 3, 1, 5, 2, 4, 7, 2, 4, 0, 8, 0, 0, 5, 6, 9, 6, 0, 3, 6, 1, 7, 3, 1, 8, 1, 8, 1, 6, 8, 2, 9, 3, 6, 3, 5, 1, 7, 9, 9, 6, 1, 9, 7, 8, 5, 1, 2, 1, 2, 5, 2, 5, 2, 0, 0, 8, 8, 8, 6, 1, 2
Offset: 0
Examples
0.15888308335967185650339272874905940845300080616153...
Links
- Michael Ian Shamos, A catalog of the real numbers (2011), p. 219.
- Wikipedia, Polygonal number.
- Index entries for transcendental numbers
Programs
-
Mathematica
RealDigits[6*Log[2] - 4, 10 , 100][[1]] (* Amiram Eldar, Sep 08 2023 *)
-
PARI
6*log(2)-4
Formula
Equals Sum_{k>=1} k/(2^k*(k + 1)*(k + 2)) [Shamos].
Equals Sum_{k>=1} (-1)^(k+1)*(4*k^2 - 2*k)/(k^2 + k).
Comments