This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365526 #16 Sep 11 2024 14:28:41 %S A365526 0,1,1,1,1,2,16,141,1051,6953,42571,247886,1401676,7868005,45210257, %T A365526 277899961,1917140421,15186484134,135259346092,1295096363273, %U A365526 12821558136891,128268683204737,1283599391456735,12817818177339530,127998022119881272 %N A365526 a(n) = Sum_{k=0..floor((n-1)/4)} Stirling2(n,4*k+1). %H A365526 Robert Israel, <a href="/A365526/b365526.txt">Table of n, a(n) for n = 0..574</a> %F A365526 Let A(0)=1, B(0)=0, C(0)=0 and D(0)=0. Let B(n+1) = Sum_{k=0..n} binomial(n,k)*A(k), C(n+1) = Sum_{k=0..n} binomial(n,k)*B(k), D(n+1) = Sum_{k=0..n} binomial(n,k)*C(k) and A(n+1) = Sum_{k=0..n} binomial(n,k)*D(k). A365525(n) = A(n), a(n) = B(n), A365527(n) = C(n) and A099948(n) = D(n). %F A365526 G.f.: Sum_{k>=0} x^(4*k+1) / Product_{j=1..4*k+1} (1-j*x). %p A365526 f:= proc(n) local k; add(Stirling2(n,4*k+1),k=0..(n-1)/4) end proc: %p A365526 map(f, [$0..30]); # _Robert Israel_, Sep 11 2024 %t A365526 a[n_] := Sum[StirlingS2[n, 4*k+1], {k, 0, Floor[(n-1)/4]}]; Array[a, 25, 0] (* _Amiram Eldar_, Sep 13 2023 *) %o A365526 (PARI) a(n) = sum(k=0, (n-1)\4, stirling(n, 4*k+1, 2)); %Y A365526 Cf. A099948, A365525, A365527. %K A365526 nonn %O A365526 0,6 %A A365526 _Seiichi Manyama_, Sep 08 2023