This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365534 #26 Oct 21 2023 06:17:07 %S A365534 1,2,15,465,61068,32453533,67904955351 %N A365534 Number of convergent Boolean relation matrices on [n]. %C A365534 A Boolean relation matrix R is convergent iff R^k = R^(k+1) for all sufficiently large k. In other words, iff the period of R is equal to 1. The digraph of R is such that all its maximal cyclic nets are primitive (A070322) iff R is convergent. Cf. Rosenblatt link. Also, R is convergent iff every diagonal block in its Frobenius normal form is either primitive or a 1 X 1 zero matrix, Theorem 1.1 in Gregory, Kirkland and Pullman. %H A365534 D. A. Gregory, S. Kirkland, and N. J. Pullman, <a href="https://doi.org/10.1016/0024-3795(93)90323-G">Power convergent Boolean matrices</a>, Linear Algebra and its Applications, Volume 179, 15 January 1993, Pages 105-117. %H A365534 G. Markowsky, <a href="http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN001251775">Bounds on the index and period of a binary relation on a finite set</a>, Semigroup Forum, Vol 13 (1977), 253-259. %H A365534 E. de Panafieu and S. Dovgal, <a href="https://arxiv.org/abs/1903.09454">Symbolic method and directed graph enumeration</a>, arXiv:1903.09454 [math.CO], 2019. %H A365534 R. W. Robinson, <a href="http://cobweb.cs.uga.edu/~rwr/publications/components.pdf">Counting digraphs with restrictions on the strong components</a>, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354. %H A365534 D. Rosenblatt, <a href="https://nvlpubs.nist.gov/nistpubs/jres/67B/jresv67Bn4p249_A1b.pdf">On the graphs of finite Boolean relation matrices</a>, Journal of Research of the National Bureau of Standards, 67B No. 4, 1963. %F A365534 Sum_{n>=0} a_n*x^n/(n!*2^binomial(n,2)) = 1/(E(x) @ exp(-(p(x)-1+x))) where E(x) = Sum_{n>=0} x^n/(n!*2^binomial(n,2)), p(x) = Sum_{n>=0} A070322(n)x^n/n! and @ is the exponential Hadamard product (see Panafieu and Dovgal). %F A365534 A070322(n) <= a(n) <= 2^(n^2) = A002416(n). %Y A365534 Cf. A070322, A002416. %K A365534 nonn,more %O A365534 0,2 %A A365534 _Geoffrey Critzer_, Sep 08 2023