This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365541 #9 Sep 17 2023 12:08:03 %S A365541 1,2,2,2,4,4,7,4,4,8,8,14,14,14,8,8,16,16,28,28,37,28,28,16,16,32,32, %T A365541 56,56,74,74,74,56,56,32,32,64,64,112,112,148,148,175,148,148,112,112, %U A365541 64,64,128,128,224,224,296,296,350,350,350,296,296,224,224,128,128 %N A365541 Irregular triangle read by rows where T(n,k) is the number of subsets of {1..n} containing two distinct elements summing to k = 3..2n-1. %C A365541 Rows are palindromic. %e A365541 Triangle begins: %e A365541 1 %e A365541 2 2 2 %e A365541 4 4 7 4 4 %e A365541 8 8 14 14 14 8 8 %e A365541 16 16 28 28 37 28 28 16 16 %e A365541 32 32 56 56 74 74 74 56 56 32 32 %e A365541 Row n = 4 counts the following subsets: %e A365541 {1,2} {1,3} {1,4} {2,4} {3,4} %e A365541 {1,2,3} {1,2,3} {2,3} {1,2,4} {1,3,4} %e A365541 {1,2,4} {1,3,4} {1,2,3} {2,3,4} {2,3,4} %e A365541 {1,2,3,4} {1,2,3,4} {1,2,4} {1,2,3,4} {1,2,3,4} %e A365541 {1,3,4} %e A365541 {2,3,4} %e A365541 {1,2,3,4} %t A365541 Table[Length[Select[Subsets[Range[n]], MemberQ[Total/@Subsets[#,{2}],k]&]], {n,2,11}, {k,3,2n-1}] %Y A365541 Row lengths are A005408. %Y A365541 The case counting only length-2 subsets is A008967. %Y A365541 Column k = n + 1 appears to be A167762. %Y A365541 The version for all subsets (instead of just pairs) is A365381. %Y A365541 Column k = n is A365544. %Y A365541 A000009 counts subsets summing to n. %Y A365541 A007865/A085489/A151897 count certain types of sum-free subsets. %Y A365541 A046663 counts partitions with no submultiset summing to k, strict A365663. %Y A365541 A093971/A088809/A364534 count certain types of sum-full subsets. %Y A365541 A365543 counts partitions with a submultiset summing to k, strict A365661. %Y A365541 Cf. A068911, A095944, A238628, A288728, A326083, A364272, A365376, A365377. %K A365541 nonn,tabf %O A365541 2,2 %A A365541 _Gus Wiseman_, Sep 15 2023