cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365541 Irregular triangle read by rows where T(n,k) is the number of subsets of {1..n} containing two distinct elements summing to k = 3..2n-1.

This page as a plain text file.
%I A365541 #9 Sep 17 2023 12:08:03
%S A365541 1,2,2,2,4,4,7,4,4,8,8,14,14,14,8,8,16,16,28,28,37,28,28,16,16,32,32,
%T A365541 56,56,74,74,74,56,56,32,32,64,64,112,112,148,148,175,148,148,112,112,
%U A365541 64,64,128,128,224,224,296,296,350,350,350,296,296,224,224,128,128
%N A365541 Irregular triangle read by rows where T(n,k) is the number of subsets of {1..n} containing two distinct elements summing to k = 3..2n-1.
%C A365541 Rows are palindromic.
%e A365541 Triangle begins:
%e A365541     1
%e A365541     2    2    2
%e A365541     4    4    7    4    4
%e A365541     8    8   14   14   14    8    8
%e A365541    16   16   28   28   37   28   28   16   16
%e A365541    32   32   56   56   74   74   74   56   56   32   32
%e A365541 Row n = 4 counts the following subsets:
%e A365541   {1,2}      {1,3}      {1,4}      {2,4}      {3,4}
%e A365541   {1,2,3}    {1,2,3}    {2,3}      {1,2,4}    {1,3,4}
%e A365541   {1,2,4}    {1,3,4}    {1,2,3}    {2,3,4}    {2,3,4}
%e A365541   {1,2,3,4}  {1,2,3,4}  {1,2,4}    {1,2,3,4}  {1,2,3,4}
%e A365541                         {1,3,4}
%e A365541                         {2,3,4}
%e A365541                         {1,2,3,4}
%t A365541 Table[Length[Select[Subsets[Range[n]], MemberQ[Total/@Subsets[#,{2}],k]&]], {n,2,11}, {k,3,2n-1}]
%Y A365541 Row lengths are A005408.
%Y A365541 The case counting only length-2 subsets is A008967.
%Y A365541 Column k = n + 1 appears to be A167762.
%Y A365541 The version for all subsets (instead of just pairs) is A365381.
%Y A365541 Column k = n is A365544.
%Y A365541 A000009 counts subsets summing to n.
%Y A365541 A007865/A085489/A151897 count certain types of sum-free subsets.
%Y A365541 A046663 counts partitions with no submultiset summing to k, strict A365663.
%Y A365541 A093971/A088809/A364534 count certain types of sum-full subsets.
%Y A365541 A365543 counts partitions with a submultiset summing to k, strict A365661.
%Y A365541 Cf. A068911, A095944, A238628, A288728, A326083, A364272, A365376, A365377.
%K A365541 nonn,tabf
%O A365541 2,2
%A A365541 _Gus Wiseman_, Sep 15 2023