This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365542 #13 Sep 13 2023 08:35:52 %S A365542 0,1,2,6,10,28,48,116,224,480,920,2000,3840,7984,15936,32320,63968, %T A365542 130176,258304,521920,1041664,2089472,4171392,8377856,16726528, %U A365542 33509632,67004416,134129664,268111360,536705024,1072961536,2146941952,4293509120,8588414976 %N A365542 Number of subsets of {1..n-1} that can be linearly combined using nonnegative coefficients to obtain n. %e A365542 The a(2) = 1 through a(5) = 10 partitions: %e A365542 {1} {1} {1} {1} %e A365542 {1,2} {2} {1,2} %e A365542 {1,2} {1,3} %e A365542 {1,3} {1,4} %e A365542 {2,3} {2,3} %e A365542 {1,2,3} {1,2,3} %e A365542 {1,2,4} %e A365542 {1,3,4} %e A365542 {2,3,4} %e A365542 {1,2,3,4} %t A365542 combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; %t A365542 Table[Length[Select[Subsets[Range[n-1]],combs[n,#]!={}&]],{n,5}] %o A365542 (Python) %o A365542 from itertools import combinations %o A365542 from sympy.utilities.iterables import partitions %o A365542 def A365542(n): %o A365542 a = {tuple(sorted(set(p))) for p in partitions(n)} %o A365542 return sum(1 for m in range(1,n) for b in combinations(range(1,n),m) if any(set(d).issubset(set(b)) for d in a)) # _Chai Wah Wu_, Sep 12 2023 %Y A365542 The case of positive coefficients is A365042, complement A365045. %Y A365542 For subsets of {1..n} instead of {1..n-1} we have A365073. %Y A365542 The binary complement is A365315. %Y A365542 The complement is counted by A365380. %Y A365542 A124506 and A326083 appear to count combination-free subsets. %Y A365542 A179822 and A326080 count sum-closed subsets. %Y A365542 A364350 counts combination-free strict partitions. %Y A365542 A364914 and A365046 count combination-full subsets. %Y A365542 Cf. A007865, A088314, A088809, A151897, A364534, A364839, A365314, A365322. %K A365542 nonn %O A365542 1,3 %A A365542 _Gus Wiseman_, Sep 09 2023 %E A365542 More terms from _Alois P. Heinz_, Sep 13 2023