cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365543 Triangle read by rows where T(n,k) is the number of integer partitions of n with a submultiset summing to k.

This page as a plain text file.
%I A365543 #14 Apr 05 2025 23:17:53
%S A365543 1,1,1,2,1,2,3,2,2,3,5,3,3,3,5,7,5,5,5,5,7,11,7,8,6,8,7,11,15,11,11,
%T A365543 11,11,11,11,15,22,15,17,15,14,15,17,15,22,30,22,23,23,22,22,23,23,22,
%U A365543 30,42,30,33,30,33,25,33,30,33,30,42
%N A365543 Triangle read by rows where T(n,k) is the number of integer partitions of n with a submultiset summing to k.
%C A365543 Rows are palindromic.
%H A365543 Robert Price, <a href="/A365543/b365543.txt">Table of n, a(n) for n = 0..324</a>
%e A365543 Triangle begins:
%e A365543    1
%e A365543    1   1
%e A365543    2   1   2
%e A365543    3   2   2   3
%e A365543    5   3   3   3   5
%e A365543    7   5   5   5   5   7
%e A365543   11   7   8   6   8   7  11
%e A365543   15  11  11  11  11  11  11  15
%e A365543   22  15  17  15  14  15  17  15  22
%e A365543   30  22  23  23  22  22  23  23  22  30
%e A365543   42  30  33  30  33  25  33  30  33  30  42
%e A365543   56  42  45  44  44  43  43  44  44  45  42  56
%e A365543   77  56  62  58  62  56  53  56  62  58  62  56  77
%e A365543 Row n = 6 counts the following partitions:
%e A365543   (6)       (51)      (42)      (33)      (42)      (51)      (6)
%e A365543   (51)      (411)     (411)     (321)     (411)     (411)     (51)
%e A365543   (42)      (321)     (321)     (3111)    (321)     (321)     (42)
%e A365543   (411)     (3111)    (3111)    (2211)    (3111)    (3111)    (411)
%e A365543   (33)      (2211)    (222)     (21111)   (222)     (2211)    (33)
%e A365543   (321)     (21111)   (2211)    (111111)  (2211)    (21111)   (321)
%e A365543   (3111)    (111111)  (21111)             (21111)   (111111)  (3111)
%e A365543   (222)               (111111)            (111111)            (222)
%e A365543   (2211)                                                      (2211)
%e A365543   (21111)                                                     (21111)
%e A365543   (111111)                                                    (111111)
%t A365543 Table[Length[Select[IntegerPartitions[n],MemberQ[Total/@Subsets[#],k]&]],{n,0,15},{k,0,n}]
%Y A365543 Columns k = 0 and k = n are A000041.
%Y A365543 Central column n = 2k is A002219.
%Y A365543 The complement is counted by A046663, strict A365663.
%Y A365543 Row sums are A304792.
%Y A365543 For subsets instead of partitions we have A365381.
%Y A365543 The strict case is A365661.
%Y A365543 A000009 counts subsets summing to n.
%Y A365543 A000124 counts distinct possible sums of subsets of {1..n}.
%Y A365543 A364272 counts sum-full strict partitions, sum-free A364349.
%Y A365543 Cf. A088809, A093971, A122768, A108917, A299701, A364911, A365541, A365658.
%K A365543 nonn,tabl
%O A365543 0,4
%A A365543 _Gus Wiseman_, Sep 16 2023