cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365545 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with exactly k distinct non-subset-sums.

This page as a plain text file.
%I A365545 #6 Sep 25 2023 12:55:53
%S A365545 1,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,0,2,0,1,0,1,0,0,2,0,1,0,1,0,0,0,3,0,
%T A365545 1,0,0,1,1,0,0,3,0,1,0,0,0,3,0,0,0,4,0,1,0,1,0,0,2,2,0,0,4,0,1,0,1,0,
%U A365545 0,0,5,0,0,0,5,0,1,0,2,0,0,0,0,5,2,0,0,5,0,1,0
%N A365545 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with exactly k distinct non-subset-sums.
%C A365545 For an integer partition y of n, we call a positive integer k <= n a non-subset-sum iff there is no submultiset of y summing to k.
%C A365545 Is column k = n - 7 given by A325695?
%e A365545 Triangle begins:
%e A365545   1
%e A365545   1  0
%e A365545   0  1  0
%e A365545   1  0  1  0
%e A365545   0  1  0  1  0
%e A365545   0  0  2  0  1  0
%e A365545   1  0  0  2  0  1  0
%e A365545   1  0  0  0  3  0  1  0
%e A365545   0  1  1  0  0  3  0  1  0
%e A365545   0  0  3  0  0  0  4  0  1  0
%e A365545   1  0  0  2  2  0  0  4  0  1  0
%e A365545   1  0  0  0  5  0  0  0  5  0  1  0
%e A365545   2  0  0  0  0  5  2  0  0  5  0  1  0
%e A365545   2  0  1  0  0  0  8  0  0  0  6  0  1  0
%e A365545   1  1  3  0  0  0  0  7  3  0  0  6  0  1  0
%e A365545   2  0  4  0  1  0  0  0 12  0  0  0  7  0  1  0
%e A365545   1  1  2  2  3  1  0  0  0 11  3  0  0  7  0  1  0
%e A365545   2  0  3  0  7  0  1  0  0  0 16  0  0  0  8  0  1  0
%e A365545   3  0  0  2  6  3  3  1  0  0  0 15  4  0  0  8  0  1  0
%e A365545 Row n = 12: counts the following partitions:
%e A365545   (6,3,2,1)  .  .  .  .  (9,2,1)  (6,5,1)  .  .  (11,1)  .  (12)  .
%e A365545   (5,4,2,1)              (8,3,1)  (6,4,2)        (10,2)
%e A365545                          (7,4,1)                 (9,3)
%e A365545                          (7,3,2)                 (8,4)
%e A365545                          (5,4,3)                 (7,5)
%t A365545 Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Length[Complement[Range[n], Total/@Subsets[#]]]==k&]],{n,0,10},{k,0,n}]
%Y A365545 Row sums are A000009, non-strict A000041.
%Y A365545 The complement (positive subset-sums) is also A365545 with rows reversed.
%Y A365545 Weighted row sums are A365922, non-strict A365918.
%Y A365545 The non-strict version is A365923, complement A365658, rank stat A325799.
%Y A365545 A046663 counts partitions without a subset summing to k, strict A365663.
%Y A365545 A126796 counts complete partitions, ranks A325781, strict A188431.
%Y A365545 A364350 counts combination-free strict partitions, complement A364839.
%Y A365545 A365543 counts partitions with a submultiset summing to k, strict A365661.
%Y A365545 A365924 counts incomplete partitions, ranks A365830, strict A365831.
%Y A365545 Cf. A006827, A284640, A304792, A364272, A365921.
%K A365545 nonn,tabl
%O A365545 0,18
%A A365545 _Gus Wiseman_, Sep 24 2023