cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365547 Triangular array read by rows. T(n,k) is the number of convergent Boolean relation matrices on [n] containing exactly k strongly connected components, n>=0, 0<=k<=n.

This page as a plain text file.
%I A365547 #13 Sep 11 2023 11:24:53
%S A365547 1,0,2,0,3,12,0,139,126,200,0,25575,17517,9288,8688,0,18077431,
%T A365547 8457840,3545350,1435920,936992,0,47024942643,14452288791,4277647665,
%U A365547 1422744780,485315280,242016192
%N A365547 Triangular array read by rows.  T(n,k) is the number of convergent Boolean relation matrices on [n] containing exactly k strongly connected components, n>=0, 0<=k<=n.
%H A365547 D. A. Gregory, S. Kirkland, and N. J. Pullman, <a href="https://doi.org/10.1016/0024-3795(93)90323-G">Power convergent Boolean matrices</a>, Linear Algebra and its Applications, Volume 179, 15 January 1993, Pages 105-117.
%H A365547 G. Markowsky, <a href="http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN001251775">Bounds on the index and period of a binary relation on a finite set</a>, Semigroup Forum, Vol 13 (1977), 253-259.
%H A365547 E. de Panafieu and S. Dovgal, <a href="https://arxiv.org/abs/1903.09454">Symbolic method and directed graph enumeration</a>, arXiv:1903.09454 [math.CO], 2019.
%H A365547 R. W. Robinson, <a href="http://cobweb.cs.uga.edu/~rwr/publications/components.pdf">Counting digraphs with restrictions on the strong components</a>, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354.
%H A365547 D. Rosenblatt, <a href="https://nvlpubs.nist.gov/nistpubs/jres/67B/jresv67Bn4p249_A1b.pdf">On the graphs of finite Boolean relation matrices</a>, Journal of Research of the National Bureau of Standards, 67B No. 4, 1963.
%F A365547  For n>=2, T(n,1) = A070322(n) and T(n,n) = A003024(n)*2^n.
%e A365547  Triangle begins ...
%e A365547   1;
%e A365547   0,        2;
%e A365547   0,        3,      12;
%e A365547   0,      139,     126,     200;
%e A365547   0,    25575,   17517,    9288,    8688;
%e A365547   0, 18077431, 8457840, 3545350, 1435920, 936992;
%e A365547   ...
%t A365547 nn = 6; B[n_] := n! 2^Binomial[n, 2]; primitive = Select[Import["https://oeis.org/A070322/b070322.txt", "Table"], Length@# == 2 &][[All, 2]]; pr[x_] := Total[primitive Table[x^i/i!, {i, 0, 6}]];
%t A365547 ggf[egf_] := Normal[Series[egf, {x, 0, nn}]] /. Table[x^i -> x^i/2^Binomial[i, 2], {i, 0, nn}];Table[Take[(Table[B[n], {n, 0, nn}] CoefficientList[Series[1/ggf[Exp[-(y pr[x] - y + y x)]], {x, 0, nn}], {x, y}])[[i]], i], {i, 1, 7}] // Grid
%Y A365547 Cf. A365534 (row sums), A070322, A003024.
%K A365547 nonn,tabl
%O A365547 0,3
%A A365547 _Geoffrey Critzer_, Sep 08 2023