cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365549 The number of exponentially odd divisors of the square root of the largest square dividing n.

This page as a plain text file.
%I A365549 #15 Apr 27 2025 00:45:29
%S A365549 1,1,1,2,1,1,1,2,2,1,1,2,1,1,1,2,1,2,1,2,1,1,1,2,2,1,2,2,1,1,1,2,1,1,
%T A365549 1,4,1,1,1,2,1,1,1,2,2,1,1,2,2,2,1,2,1,2,1,2,1,1,1,2,1,1,2,3,1,1,1,2,
%U A365549 1,1,1,4,1,1,2,2,1,1,1,2,2,1,1,2,1,1,1
%N A365549 The number of exponentially odd divisors of the square root of the largest square dividing n.
%C A365549 First differs from A278908, A307848, A323308 and A358260 at n = 64.
%C A365549 The number of exponentially odd divisors of the largest square dividing n is the same as the number of squares dividing n, A046951(n).
%H A365549 Amiram Eldar, <a href="/A365549/b365549.txt">Table of n, a(n) for n = 1..10000</a>
%F A365549 a(n) = A322483(A000188(n)).
%F A365549 a(n) >= 1 with equality if and only if n is squarefree (A005117).
%F A365549 Multiplicative with a(p^e) = 2 + floor((e-2)/4).
%F A365549 Dirichlet g.f.: zeta(s) * zeta(4*s) * Product_{p prime} (1 + 1/p^(2*s) - 1/p^(4*s)).
%F A365549 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(4) * Product_{p prime} (1 + 1/p^2 - 1/p^4) = 1.54211628314015874165... .
%t A365549 f[p_, e_] := 2 + Floor[(e-2)/4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A365549 (PARI) a(n) = vecprod(apply(x -> 2 + (x-2)\4, factor(n)[, 2]));
%Y A365549 Cf. A000188, A005117, A013662, A046951, A322483.
%Y A365549 Cf. A278908, A307848, A323308, A358260.
%K A365549 nonn,easy,mult
%O A365549 1,4
%A A365549 _Amiram Eldar_, Sep 08 2023