This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365549 #15 Apr 27 2025 00:45:29 %S A365549 1,1,1,2,1,1,1,2,2,1,1,2,1,1,1,2,1,2,1,2,1,1,1,2,2,1,2,2,1,1,1,2,1,1, %T A365549 1,4,1,1,1,2,1,1,1,2,2,1,1,2,2,2,1,2,1,2,1,2,1,1,1,2,1,1,2,3,1,1,1,2, %U A365549 1,1,1,4,1,1,2,2,1,1,1,2,2,1,1,2,1,1,1 %N A365549 The number of exponentially odd divisors of the square root of the largest square dividing n. %C A365549 First differs from A278908, A307848, A323308 and A358260 at n = 64. %C A365549 The number of exponentially odd divisors of the largest square dividing n is the same as the number of squares dividing n, A046951(n). %H A365549 Amiram Eldar, <a href="/A365549/b365549.txt">Table of n, a(n) for n = 1..10000</a> %F A365549 a(n) = A322483(A000188(n)). %F A365549 a(n) >= 1 with equality if and only if n is squarefree (A005117). %F A365549 Multiplicative with a(p^e) = 2 + floor((e-2)/4). %F A365549 Dirichlet g.f.: zeta(s) * zeta(4*s) * Product_{p prime} (1 + 1/p^(2*s) - 1/p^(4*s)). %F A365549 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(4) * Product_{p prime} (1 + 1/p^2 - 1/p^4) = 1.54211628314015874165... . %t A365549 f[p_, e_] := 2 + Floor[(e-2)/4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] %o A365549 (PARI) a(n) = vecprod(apply(x -> 2 + (x-2)\4, factor(n)[, 2])); %Y A365549 Cf. A000188, A005117, A013662, A046951, A322483. %Y A365549 Cf. A278908, A307848, A323308, A358260. %K A365549 nonn,easy,mult %O A365549 1,4 %A A365549 _Amiram Eldar_, Sep 08 2023