cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365551 The number of exponentially odd divisors of the smallest exponentially odd number divisible by n.

This page as a plain text file.
%I A365551 #12 Sep 09 2023 11:34:01
%S A365551 1,2,2,3,2,4,2,3,3,4,2,6,2,4,4,4,2,6,2,6,4,4,2,6,3,4,3,6,2,8,2,4,4,4,
%T A365551 4,9,2,4,4,6,2,8,2,6,6,4,2,8,3,6,4,6,2,6,4,6,4,4,2,12,2,4,6,5,4,8,2,6,
%U A365551 4,8,2,9,2,4,6,6,4,8,2,8,4,4,2,12,4,4,4
%N A365551 The number of exponentially odd divisors of the smallest exponentially odd number divisible by n.
%C A365551 First differs from A049599 and A282446 at n = 32, and from A353898 at n = 64.
%H A365551 Amiram Eldar, <a href="/A365551/b365551.txt">Table of n, a(n) for n = 1..10000</a>
%H A365551 Vaclav Kotesovec, <a href="/A365551/a365551.jpg">Graph - the asymptotic ratio (100000 terms)</a>.
%F A365551 a(n) = A322483(A356191(n)).
%F A365551 Multiplicative with a(p^e) = ceiling((e+3)/2).
%F A365551 Dirichlet g.f.: zeta(s) * zeta(2*s) * Product_{p prime} (1 + 1/p^s - 1/p^(3*s)).
%F A365551 From _Vaclav Kotesovec_, Sep 09 2023: (Start)
%F A365551 Let f(s) = Product_{p prime} (1 - 1/p^(2*s) - 1/p^(3*s) + 1/p^(4*s)).
%F A365551 Dirichlet g.f.: zeta(s)^2 * zeta(2*s) * f(s).
%F A365551 Sum_{k=1..n} a(k) ~ (Pi^2 * f(1) * n / 6) * (log(n) + 2*gamma - 1 + 12*zeta'(2)/Pi^2 + f'(1)/f(1)), where
%F A365551 f(1) = Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = 0.5358961538283379998085026313185459506482223745141452711510108346133288119...,
%F A365551 f'(1) = f(1) * Sum_{p prime} (-4 + 3*p + 2*p^2) * log(p) / (1 - p - p^2 + p^4) = f(1) * 1.452592479445159559037143959382854734148246511441192913672347667991...
%F A365551 and gamma is the Euler-Mascheroni constant A001620. (End)
%t A365551 f[p_, e_] := Ceiling[(e + 3)/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A365551 (PARI) a(n) = vecprod(apply(x -> ceil((x+3)/2), factor(n)[, 2]));
%Y A365551 Cf. A322483, A356191.
%Y A365551 Cf. A049599, A282446, A353898.
%K A365551 nonn,easy,mult
%O A365551 1,2
%A A365551 _Amiram Eldar_, Sep 08 2023