cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365552 The number of exponentially odd divisors of the powerful part of n.

This page as a plain text file.
%I A365552 #9 Sep 09 2023 06:48:16
%S A365552 1,1,1,2,1,1,1,3,2,1,1,2,1,1,1,3,1,2,1,2,1,1,1,3,2,1,3,2,1,1,1,4,1,1,
%T A365552 1,4,1,1,1,3,1,1,1,2,2,1,1,3,2,2,1,2,1,3,1,3,1,1,1,2,1,1,2,4,1,1,1,2,
%U A365552 1,1,1,6,1,1,2,2,1,1,1,3,3,1,1,2,1,1,1
%N A365552 The number of exponentially odd divisors of the powerful part of n.
%C A365552 First differs from A095691 at n = 512.
%H A365552 Amiram Eldar, <a href="/A365552/b365552.txt">Table of n, a(n) for n = 1..10000</a>
%F A365552 a(n) = A322483(A057521(n)).
%F A365552 Multiplicative with a(p) = 1 and a(p^e) = floor((e+3)/2) for e >= 2.
%F A365552 Dirichlet g.f.: zeta(s) * zeta(2*s) * Product_{p prime} (1 + 1/p^(3*s) - 1/p^(4*s)).
%F A365552 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2) * Product_{p prime} (1 + 1/p^3 - 1/p^4) = 1.80989829762278336163... .
%t A365552 f[p_, e_] := If[e == 1, 1, Floor[(e + 3)/2]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A365552 (PARI) a(n) = vecprod(apply(x -> if(x == 1, 1, (x+3)\2), factor(n)[, 2]));
%Y A365552 Cf. A013661, A095691, A057521, A322483.
%K A365552 nonn,easy,mult
%O A365552 1,4
%A A365552 _Amiram Eldar_, Sep 08 2023