cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A375428 The maximum exponent in the unique factorization of n in terms of distinct terms of A115975 using the Zeckendorf representation of the exponents in the prime factorization of n; a(1) = 0.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 5, 1, 2, 2, 2, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Amiram Eldar, Aug 15 2024

Keywords

Comments

Differs from A095691 and A365552 at n = 1, 32, 36, 64, 72, 96, 100, ... . Differs from A368105 at n = 1, 36, 72, 100, 108, ... .
When the exponents in the prime factorization of n are expanded as sums of distinct Fibonacci numbers using the Zeckendorf representation (A014417), we get a unique factorization of n in terms of distinct terms of A115975, i.e., n is represented as a product of prime powers (A246655) whose exponents are Fibonacci numbers. a(n) is the maximum exponent of these prime powers. Thus all the terms are Fibonacci numbers.

Examples

			For n = 16 = 2^4, the Zeckendorf representation of 4 is 101, i.e., 4 = Fibonacci(2) + Fibonacci(4) = 1 + 3. Therefore 16 = 2^(1+3) = 2^1 * 2^3, and a(16) = 3.
		

Crossrefs

Programs

  • Mathematica
    A087172[n_] := Module[{k = 2}, While[Fibonacci[k] <= n, k++]; Fibonacci[k-1]]; a[n_] := A087172[Max[FactorInteger[n][[;;, 2]]]]; a[1] = 0; Array[a, 100]
  • PARI
    A087172(n) = {my(k = 2); while(fibonacci(k) <= n, k++); fibonacci(k-1);}
    a(n) = if(n == 1, 0, A087172(vecmax(factor(n)[,2])));

Formula

a(n) = A087172(A051903(n)) for n >= 2.
a(n) = A000045(A375429(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2 - 1/zeta(2) + Sum_{k>=4} Fibonacci(k) * (1 - 1/zeta(Fibonacci(k))) = 1.64419054900327345836... .

A368105 The number of bi-unitary divisors of n that are powerful (A001694).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 12 2023

Keywords

Comments

First differs from A095691 and A365552 at n = 32.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 2 || OddQ[e], e, e -1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x%2 || x == 2, x, x-1), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = e if e = 2 or e is odd, and e-1 otherwise.
a(n) >= 1, with equality if and only if n is squarefree (A005117).
a(n) <= A286324(n), with equality if and only if n equals the square of a squarefree number (A062503).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2) * Product_{p prime} (1 + 1/p^3 - 1/p^4 + 1/p^5) = 1.87133814920590891161... .

A383292 Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^(2*s) + 1/p^(3*s)).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 3, 1, 2, 2, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 22 2025

Keywords

Comments

First differs from A095691, A365552 and A368105 at n = 32.
The number of divisors of n that are both biquadratefree (A046100) and powerful (A001694). - Amiram Eldar, Apr 22 2025

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e < 4, e, 3]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 22 2025 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1-X) * (1 + X^2 + X^3))[n], ", "))

Formula

Sum_{k=1..n} a(k) ~ c * n, where c = A330595 = Product_{p prime} (1 + 1/p^2 + 1/p^3) = 1.74893299784324530303390699768511480225988349359548...
Multiplicative with a(p^e) = e if e < 4 and 3 otherwise. - Amiram Eldar, Apr 22 2025
Showing 1-3 of 3 results.