cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365585 Expansion of e.g.f. 1 / (1 + 5 * log(1-x))^(2/5).

This page as a plain text file.
%I A365585 #12 Sep 11 2023 01:46:06
%S A365585 1,2,16,214,4030,98020,2923580,103306320,4219788720,195631761360,
%T A365585 10148327972160,582405469831920,36635844203963760,2506613821744700640,
%U A365585 185327181909308762400,14724431257109269113600,1251088847268683450630400,113202071235423519573369600
%N A365585 Expansion of e.g.f. 1 / (1 + 5 * log(1-x))^(2/5).
%F A365585 a(n) = Sum_{k=0..n} (Product_{j=0..k-1} (5*j+2)) * |Stirling1(n,k)|.
%F A365585 a(0) = 1; a(n) = Sum_{k=1..n} (5 - 3*k/n) * (k-1)! * binomial(n,k) * a(n-k).
%t A365585 a[n_] := Sum[Product[5*j + 2, {j, 0, k - 1}] * Abs[StirlingS1[n, k]], {k, 0, n}]; Array[a, 18, 0] (* _Amiram Eldar_, Sep 10 2023 *)
%o A365585 (PARI) a(n) = sum(k=0, n, prod(j=0, k-1, 5*j+2)*abs(stirling(n, k, 1)));
%Y A365585 Cf. A346987, A365586, A365587, A365588.
%Y A365585 Cf. A365568.
%K A365585 nonn
%O A365585 0,2
%A A365585 _Seiichi Manyama_, Sep 10 2023