This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365586 #12 Sep 13 2023 02:10:19 %S A365586 1,3,27,390,7770,197520,6108720,222585360,9337369920,443180705520, %T A365586 23478556469040,1373311758143520,87902002849402080, %U A365586 6111187336982764800,458573390187299798400,36939974397639066086400,3179423992959428231894400,291190738388834303603395200 %N A365586 Expansion of e.g.f. 1 / (1 + 5 * log(1-x))^(3/5). %F A365586 a(n) = Sum_{k=0..n} (Product_{j=0..k-1} (5*j+3)) * |Stirling1(n,k)|. %F A365586 a(0) = 1; a(n) = Sum_{k=1..n} (5 - 2*k/n) * (k-1)! * binomial(n,k) * a(n-k). %t A365586 a[n_] := Sum[Product[5*j + 3, {j, 0, k - 1}] * Abs[StirlingS1[n, k]], {k, 0, n}]; Array[a, 18, 0] (* _Amiram Eldar_, Sep 13 2023 *) %o A365586 (PARI) a(n) = sum(k=0, n, prod(j=0, k-1, 5*j+3)*abs(stirling(n, k, 1))); %Y A365586 Cf. A346987, A365585, A365587, A365588. %Y A365586 Cf. A365569. %K A365586 nonn %O A365586 0,2 %A A365586 _Seiichi Manyama_, Sep 10 2023