cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365587 Expansion of e.g.f. 1 / (1 + 5 * log(1-x))^(4/5).

This page as a plain text file.
%I A365587 #12 Sep 13 2023 02:10:32
%S A365587 1,4,40,620,13020,345120,11049960,414711720,17851113720,866838536640,
%T A365587 46873882199520,2793214943693280,181854240448514400,
%U A365587 12842833148474299200,977822088984613771200,79842750450344086867200,6959878576257689846265600
%N A365587 Expansion of e.g.f. 1 / (1 + 5 * log(1-x))^(4/5).
%F A365587 a(n) = Sum_{k=0..n} (Product_{j=0..k-1} (5*j+4)) * |Stirling1(n,k)|.
%F A365587 a(0) = 1; a(n) = Sum_{k=1..n} (5 - k/n) * (k-1)! * binomial(n,k) * a(n-k).
%t A365587 a[n_] := Sum[Product[5*j + 4, {j, 0, k - 1}] * Abs[StirlingS1[n, k]], {k, 0, n}]; Array[a, 17, 0] (* _Amiram Eldar_, Sep 13 2023 *)
%o A365587 (PARI) a(n) = sum(k=0, n, prod(j=0, k-1, 5*j+4)*abs(stirling(n, k, 1)));
%Y A365587 Cf. A346987, A365585, A365586, A365588.
%Y A365587 Cf. A365570.
%K A365587 nonn
%O A365587 0,2
%A A365587 _Seiichi Manyama_, Sep 10 2023