A365594 The denominators of a series that converges to 1/e obtained using Whittaker's Root Series Formula.
3, 42, 154, 3817, 1141283, 119706444, 1396550916, 20958700652, 2359646218028, 324742403298918, 107268957934572210, 41877140987048387615, 19073758392921536694655, 10024177256513161424322680, 376301673554116445531842536, 10673126660749797308728534491
Offset: 1
Examples
Whittaker's Root Series Formula is applied to 1 + the Taylor expansion of log(1+x) and the terms are simplified. The sequence is formed by the denominators of the simplified terms, starting with the second term in the Whittaker's Root Series. a(1) is the denominator of -(-1/2)/(1*det((1,-1/2),(1,1))) = (1/2)/(3/2) = 1/3. a(2) is the denominator of -det((-1/2,1/3),(1,-1/2))/(det((1,-1/2),(1,1))*det((1,-1/2,1/3),(1,1,-1/2),(0,1,1))) = (1/12)/((3/2)*(7/3)) = 1/42.
Links
- Raul Prisacariu, Whittaker's Root Series: Going Transcendental.
- E. T. Whittaker and G. Robinson, The Calculus of Observations, London: Blackie & Son, Ltd. 1924, pp. 120-123.
Programs
-
Mathematica
c[k_] := If[k < 0, 0, SeriesCoefficient[1 + Log[1 + x], {x, 0, k}]]; Table[-Det[ToeplitzMatrix[Table[c[3 - j], {j, 1, n}], Table[c[j + 1], {j, 1, n}]]] / (Det[ToeplitzMatrix[Table[c[2 - j], {j, 1, n}], Table[c[j], {j, 1, n}]]] * Det[ToeplitzMatrix[Table[c[2 - j], {j, 1, n + 1}], Table[c[j], {j, 1, n + 1}]]]), {n, 1, 20}] // Denominator (* Vaclav Kotesovec, Oct 09 2023 *)
Formula
a(n) is the denominator of the simplified fraction -det ToeplitzMatrix((c(2),c(1),c(0),0,0,...,0),(c(2),c(3),c(4),...,c(n+1)))/(det ToeplitzMatrix((c(1),c(0),0,...,0),(c(1),c(2),c(3),...,c(n)))*det ToeplitzMatrix((c(1),c(0),0,...,0),(c(1),c(2),c(3),...,c(n+1)))), where c(0)=1, c(1)=1, c(2)=-1/2, c(3)=1/3, c(4)=-1/4, c(n)=(1/n)*(-1)^(n+1).c(n) is simply the coefficient of x^n in the series formed by 1+ the Taylor expansion of log(1+x).
Extensions
a(6)-a(7) corrected and extended by Vaclav Kotesovec, Oct 09 2023
Comments