A365595 The numerators of a series that converges to 1/e obtained using Whittaker's Root Series Formula.
1, 1, 1, 9, 1126, 53825, 302989, 2285199, 133296721, 9731109349, 1737376806937, 372236638394027, 94229801087550639, 27818002500902930641, 591930814558449521261, 9591188150350759241842, 2816408483135723327055984, 1394771058490469072473603553, 385768133102988434073147277769
Offset: 1
Examples
Whittaker's Root Series Formula is applied to 1 + the Taylor expansion of log(1+x) and the terms are simplified. The sequence is formed by the numerators of the simplified terms, starting with the second term in the Whittaker's Root Series. a(1) is the numerator of -(-1/2)/(1*det((1,-1/2),(1,1))) = (1/2)/(3/2) = 1/3. a(2) is the numerator of -det((-1/2,1/3),(1,-1/2))/(det((1,-1/2),(1,1))*det((1,-1/2,1/3),(1,1,-1/2),(0,1,1))) = (1/12)/((3/2)*(7/3)) = 1/42.
Links
- Raul Prisacariu, Whittaker's Root Series: Going Transcendental.
- E. T. Whittaker and G. Robinson, The Calculus of Observations, London: Blackie & Son, Ltd. 1924, pp. 120-123.
Programs
-
Mathematica
c[k_] := If[k < 0, 0, SeriesCoefficient[1 + Log[1 + x], {x, 0, k}]]; Table[-Det[ToeplitzMatrix[Table[c[3 - j], {j, 1, n}], Table[c[j + 1], {j, 1, n}]]] / (Det[ToeplitzMatrix[Table[c[2 - j], {j, 1, n}], Table[c[j], {j, 1, n}]]] * Det[ToeplitzMatrix[Table[c[2 - j], {j, 1, n + 1}], Table[c[j], {j, 1, n + 1}]]]), {n, 1, 20}] // Numerator (* Vaclav Kotesovec, Oct 09 2023 *)
Formula
a(n) is the numerator of the simplified fraction -det ToeplitzMatrix((c(2),c(1),c(0),0,0,...,0),(c(2),c(3),c(4),...,c(n+1)))/(det ToeplitzMatrix((c(1),c(0),0,...,0),(c(1),c(2),c(3),...,c(n)))*det ToeplitzMatrix((c(1),c(0),0,...,0),(c(1),c(2),c(3),...,c(n+1)))), where c(0)=1, c(1)=1, c(2)=-1/2, c(3)=1/3, c(4)=-1/4, c(n)=(1/n)*(-1)^(n+1).c(n) is simply the coefficient of x^n in the series formed by 1+ the Taylor expansion of log(1+x).
Extensions
More terms from Vaclav Kotesovec, Oct 09 2023
Comments