cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365599 Expansion of e.g.f. 1 / (1 - 3 * log(1 + x))^(2/3).

This page as a plain text file.
%I A365599 #15 Nov 11 2023 05:42:20
%S A365599 1,2,8,54,498,5868,83940,1413480,27375240,599437440,14641665120,
%T A365599 394657325280,11635613604000,372469741813440,12864889063033920,
%U A365599 476870475257550720,18882021780125953920,795381867831610978560,35515223076159203880960
%N A365599 Expansion of e.g.f. 1 / (1 - 3 * log(1 + x))^(2/3).
%F A365599 a(n) = Sum_{k=0..n} (Product_{j=0..k-1} (3*j+2)) * Stirling1(n,k).
%F A365599 a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k-1) * (3 - k/n) * (k-1)! * binomial(n,k) * a(n-k).
%F A365599 a(n) ~ Gamma(1/3) * n^(n + 1/6) / (3^(1/6) * sqrt(2*Pi) * (exp(1/3) - 1)^(n + 2/3) * exp(n - 2/9)). - _Vaclav Kotesovec_, Nov 11 2023
%t A365599 a[n_] := Sum[Product[3*j + 2, {j, 0, k - 1}] * StirlingS1[n, k], {k, 0, n}]; Array[a, 19, 0] (* _Amiram Eldar_, Sep 13 2023 *)
%o A365599 (PARI) a(n) = sum(k=0, n, prod(j=0, k-1, 3*j+2)*stirling(n, k, 1));
%Y A365599 Cf. A335531, A347020.
%Y A365599 Cf. A365575.
%K A365599 nonn
%O A365599 0,2
%A A365599 _Seiichi Manyama_, Sep 11 2023