cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365602 Expansion of e.g.f. 1 / (1 - 5 * log(1 + x))^(3/5).

This page as a plain text file.
%I A365602 #12 Sep 13 2023 02:12:40
%S A365602 1,3,21,246,3990,82800,2092560,62343600,2139137760,83064002160,
%T A365602 3600715721040,172353630085920,9028586395211040,513740204261763840,
%U A365602 31553316959017737600,2080500578006553619200,146577866381052082876800,10988979300484733769667200
%N A365602 Expansion of e.g.f. 1 / (1 - 5 * log(1 + x))^(3/5).
%F A365602 a(n) = Sum_{k=0..n} (Product_{j=0..k-1} (5*j+3)) * Stirling1(n,k).
%F A365602 a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k-1) * (5 - 2*k/n) * (k-1)! * binomial(n,k) * a(n-k).
%t A365602 a[n_] := Sum[Product[5*j + 3, {j, 0, k - 1}] * StirlingS1[n, k], {k, 0, n}]; Array[a, 18, 0] (* _Amiram Eldar_, Sep 13 2023 *)
%o A365602 (PARI) a(n) = sum(k=0, n, prod(j=0, k-1, 5*j+3)*stirling(n, k, 1));
%Y A365602 Cf. A347022, A365601, A365603, A365604.
%Y A365602 Cf. A365586.
%K A365602 nonn
%O A365602 0,2
%A A365602 _Seiichi Manyama_, Sep 11 2023