cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365603 Expansion of e.g.f. 1 / (1 - 5 * log(1 + x))^(4/5).

This page as a plain text file.
%I A365603 #12 Sep 13 2023 02:12:26
%S A365603 1,4,32,404,6924,150000,3927480,120582360,4246964280,168767136000,
%T A365603 7468938047520,364284571992480,19412919898230240,1122216138563359680,
%U A365603 69941868616009932480,4675040053248335097600,333605090142406849939200,25312518953112479346316800
%N A365603 Expansion of e.g.f. 1 / (1 - 5 * log(1 + x))^(4/5).
%F A365603 a(n) = Sum_{k=0..n} (Product_{j=0..k-1} (5*j+4)) * Stirling1(n,k).
%F A365603 a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k-1) * (5 - k/n) * (k-1)! * binomial(n,k) * a(n-k).
%t A365603 a[n_] := Sum[Product[5*j + 4, {j, 0, k - 1}] * StirlingS1[n, k], {k, 0, n}]; Array[a, 18, 0] (* _Amiram Eldar_, Sep 13 2023 *)
%o A365603 (PARI) a(n) = sum(k=0, n, prod(j=0, k-1, 5*j+4)*stirling(n, k, 1));
%Y A365603 Cf. A347022, A365601, A365602, A365604.
%Y A365603 Cf. A365587.
%K A365603 nonn
%O A365603 0,2
%A A365603 _Seiichi Manyama_, Sep 11 2023