cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365633 The sum of divisors of n that are terms of A072873.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 7, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 4, 3, 1, 1, 1, 7, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 7, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 1, 15, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 7, 4, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 14 2023

Keywords

Comments

The number of these divisors is A365632(n) and the largest of them is A327939(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(Floor[e/p] + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^(1+f[i,2] \ f[i,1])-1)/(f[i,1] - 1));}

Formula

Multiplicative with a(p^e) = (p^(floor(e/p)+1) - 1)/(p - 1).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (A332653(p)/(p^(p-1)-1) - 1/(p*(p-1))) = 2.253624924813... .