This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365635 #20 Sep 20 2023 01:44:30 %S A365635 1,1,1,4,1,1,1,4,1,1,1,4,1,1,1,4,1,1,1,4,1,1,1,4,1,1,27,4,1,1,1,4,1,1, %T A365635 1,4,1,1,1,4,1,1,1,4,1,1,1,4,1,1,1,4,1,27,1,4,1,1,1,4,1,1,1,4,1,1,1,4, %U A365635 1,1,1,4,1,1,1,4,1,1,1,4,27,1,1,4,1,1 %N A365635 The largest divisor of n that is a term of A048102. %H A365635 Amiram Eldar, <a href="/A365635/b365635.txt">Table of n, a(n) for n = 1..10000</a> %H A365635 Vaclav Kotesovec, <a href="/A365635/a365635.pdf">Graphs - the asymptotic ratio (10^7, 10^8 and 10^9 terms)</a>. %F A365635 Multiplicative with a(p^e) = 1 if e < p and p^p otherwise. %F A365635 a(n) <= n with equality if and only if n is in A048102. %F A365635 a(n) >= 1 with equality if and only if n is in A048103. %F A365635 Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + (p^p-1)/p^(p*s)). %t A365635 f[p_, e_] := p^If[e < p, 0, p]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] %o A365635 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] < f[i,1], 1, f[i, 1]^f[i,1]));} %Y A365635 Cf. A048102, A048103, A327939, A365634. %K A365635 nonn,easy,mult %O A365635 1,4 %A A365635 _Amiram Eldar_, Sep 14 2023