This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365638 #27 Dec 31 2024 15:37:01 %S A365638 1,1,1,2,4,2,8,24,24,6,64,256,384,192,24,1024,5120,10240,7680,1920, %T A365638 120,32768,196608,491520,491520,184320,23040,720,2097152,14680064, %U A365638 44040192,55050240,27525120,5160960,322560,5040,268435456,2147483648,7516192768,11274289152,7046430720,1761607680,165150720,5160960,40320 %N A365638 Triangular array read by rows: T(n, k) is the number of ways that a k-element transitive tournament can occur as a subtournament of a larger tournament on n labeled vertices. %C A365638 A tournament is a directed digraph obtained by assigning a direction for each edge in an undirected complete graph. In a transitive tournament all nodes can be strictly ordered by their reachability. %H A365638 Paul Erdős, <a href="https://www.renyi.hu/~p_erdos/1964-22.pdf">On a problem in graph theory</a>, The Mathematical Gazette, 47: 220-223 (1963). %F A365638 T(n, k) = binomial(n, k)*k!*2^(binomial(n, 2) - binomial(k, 2)). %F A365638 T(n, 0) = A006125(n). %F A365638 T(n, 1) = A095340(n). %F A365638 T(n, 2) = A103904(n). %F A365638 T(n, n) = n!. %F A365638 T(n, n-1) = A002866(n-1). %F A365638 T(n, n-2) = A052670(n). %F A365638 T(n, k) = A008279(n, k) * A117260(n, k). - _Peter Luschny_, Dec 31 2024 %e A365638 Triangle begins: %e A365638 1 %e A365638 1, 1 %e A365638 2, 4, 2 %e A365638 8, 24, 24, 6 %e A365638 64, 256, 384, 192, 24 %e A365638 1024, 5120, 10240, 7680, 1920, 120 %p A365638 T := (n, k) -> 2^(((n-1)*n - (k-1)*k)/2) * n! / (n-k)!: %p A365638 seq(seq(T(n, k), k = 0..n), n = 0..8); # _Peter Luschny_, Nov 02 2023 %o A365638 (PARI) T(n, k) = binomial(n, k)*k!*2^(binomial(n, 2) - binomial(k, 2)) %Y A365638 Cf. A002866, A006125, A052670, A095340, A103904, A008279, A117260, A379614 (row sums). %Y A365638 Cf. A122027, A224886, A259105, A350608, A350609, A350610. %K A365638 nonn,easy,tabl %O A365638 0,4 %A A365638 _Thomas Scheuerle_, Sep 14 2023