cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365643 Number of permutations whose reverse-complement shares the same recording tableau in the Robinson-Schensted correspondence.

This page as a plain text file.
%I A365643 #30 Dec 29 2023 16:42:56
%S A365643 1,1,2,2,12,24,136,344,2872,7108,80672,211056,3032376
%N A365643 Number of permutations whose reverse-complement shares the same recording tableau in the Robinson-Schensted correspondence.
%C A365643 This is an open problem from Martin's "Algebraic Combinatorics" lecture.
%H A365643 Tucker J. Ervin, Blake Jackson, Jay Lane, Kyungyong Lee, Son Dang Nguyen, Jack O'Donohue, and Michael Vaughan, <a href="https://www.mat.univie.ac.at/~slc/wpapers/s86jackson.html">Permutations whose reverse shares the same recording tableau in the RS correspondence</a>, Sém. Lothar. Combin. 86 (2022), Art. B86a, 15 pp.
%H A365643 Jeremy L. Martin, <a href="https://jlmartin.ku.edu/LectureNotes.pdf">Lecture Notes on Algebraic Combinatorics</a>, 2010-2023.
%H A365643 Wikipedia, <a href="https://en.wikipedia.org/wiki/Robinson%E2%80%93Schensted_correspondence">Robinson-Schensted correspondence</a>.
%o A365643 (SageMath)
%o A365643 def a(n): return sum(StandardTableaux(T.shape()).cardinality()
%o A365643                for T in StandardTableaux(n) if T == T.evacuation())
%o A365643 print([a(n) for n in range(13)])
%Y A365643 Cf. A059304.
%K A365643 nonn,more
%O A365643 0,3
%A A365643 _Dang-Son Nguyen_, Sep 14 2023