This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365643 #30 Dec 29 2023 16:42:56 %S A365643 1,1,2,2,12,24,136,344,2872,7108,80672,211056,3032376 %N A365643 Number of permutations whose reverse-complement shares the same recording tableau in the Robinson-Schensted correspondence. %C A365643 This is an open problem from Martin's "Algebraic Combinatorics" lecture. %H A365643 Tucker J. Ervin, Blake Jackson, Jay Lane, Kyungyong Lee, Son Dang Nguyen, Jack O'Donohue, and Michael Vaughan, <a href="https://www.mat.univie.ac.at/~slc/wpapers/s86jackson.html">Permutations whose reverse shares the same recording tableau in the RS correspondence</a>, Sém. Lothar. Combin. 86 (2022), Art. B86a, 15 pp. %H A365643 Jeremy L. Martin, <a href="https://jlmartin.ku.edu/LectureNotes.pdf">Lecture Notes on Algebraic Combinatorics</a>, 2010-2023. %H A365643 Wikipedia, <a href="https://en.wikipedia.org/wiki/Robinson%E2%80%93Schensted_correspondence">Robinson-Schensted correspondence</a>. %o A365643 (SageMath) %o A365643 def a(n): return sum(StandardTableaux(T.shape()).cardinality() %o A365643 for T in StandardTableaux(n) if T == T.evacuation()) %o A365643 print([a(n) for n in range(13)]) %Y A365643 Cf. A059304. %K A365643 nonn,more %O A365643 0,3 %A A365643 _Dang-Son Nguyen_, Sep 14 2023