cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365647 Dirichlet convolution of Dedekind psi function with reduced totient function.

This page as a plain text file.
%I A365647 #10 Sep 20 2023 15:59:16
%S A365647 1,4,6,11,10,24,14,26,26,40,22,64,26,56,56,58,34,104,38,106,78,88,46,
%T A365647 148,74,104,102,148,58,224,62,128,122,136,128,272,74,152,144,244,82,
%U A365647 312,86,232,232,184,94,326,146,296,188,274,106,408,200,340,210,232,118
%N A365647 Dirichlet convolution of Dedekind psi function with reduced totient function.
%F A365647 a(n) = Sum{d|n} A001615(d) * A002322(n/d).
%F A365647 a(p) = A365648(p) where p is a term of A000040.
%t A365647 psi[n_Integer] := n * Times @@ (1 + 1/FactorInteger[n][[;; , 1]]); psi[1] = 1; Table[DirichletConvolve[psi[k], CarmichaelLambda[k], k, n], {n, 1, 100}] (* _Amiram Eldar_, Sep 15 2023 *)
%o A365647 (Python)
%o A365647 from sympy import divisors, primefactors, prod, reduced_totient
%o A365647 def psi(n):
%o A365647     return n*prod(p+1 for p in primefactors(n))//prod(primefactors(n))
%o A365647 def a(n): return sum(psi(d) * reduced_totient(n//d) for d in divisors(n))
%Y A365647 Cf. A000040, A001615, A002322, A365648.
%K A365647 nonn
%O A365647 1,2
%A A365647 _Torlach Rush_, Sep 14 2023