A365649 Dirichlet convolution of sigma with Dedekind psi function.
1, 6, 8, 22, 12, 48, 16, 66, 41, 72, 24, 176, 28, 96, 96, 178, 36, 246, 40, 264, 128, 144, 48, 528, 97, 168, 176, 352, 60, 576, 64, 450, 192, 216, 192, 902, 76, 240, 224, 792, 84, 768, 88, 528, 492, 288, 96, 1424, 177, 582, 288, 616, 108, 1056, 288, 1056, 320
Offset: 1
Programs
-
Mathematica
f[p_, e_] := (2 + ((e + 1)*p^2 - 2*p - e - 1)*p^e)/(p - 1)^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 15 2023 *)
-
PARI
for(n=1, 100, print1(direuler(p=2, n, (1+X) / ((1-X) * (1 - p*X)^2))[n], ", ")) \\ Vaclav Kotesovec, Sep 15 2023
-
Python
from sympy import divisors, primefactors, prod, reduced_totient, divisor_sigma def psi(n): return n*prod(p+1 for p in primefactors(n))//prod(primefactors(n)) def a(n): return sum(divisor_sigma(d, 1) * psi(n//d) for d in divisors(n))
Formula
Multiplicative with a(p^e) = (2 + ((e+1)*p^2 - 2*p - e - 1)*p^e)/(p-1)^2. - Amiram Eldar, Sep 15 2023
From Vaclav Kotesovec, Sep 15 2023: (Start)
Dirichlet g.f.: zeta(s)^2 * zeta(s-1)^2 / zeta(2*s).
Sum_{k=1..n} a(k) ~ 5*n^2 * (log(n)/4 + gamma/2 - 1/8 + 3*zeta'(2)/Pi^2 - 45*zeta'(4)/Pi^4), where gamma is the Euler-Mascheroni constant A001620. (End)