cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365649 Dirichlet convolution of sigma with Dedekind psi function.

Original entry on oeis.org

1, 6, 8, 22, 12, 48, 16, 66, 41, 72, 24, 176, 28, 96, 96, 178, 36, 246, 40, 264, 128, 144, 48, 528, 97, 168, 176, 352, 60, 576, 64, 450, 192, 216, 192, 902, 76, 240, 224, 792, 84, 768, 88, 528, 492, 288, 96, 1424, 177, 582, 288, 616, 108, 1056, 288, 1056, 320
Offset: 1

Views

Author

Torlach Rush, Sep 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (2 + ((e + 1)*p^2 - 2*p - e - 1)*p^e)/(p - 1)^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 15 2023 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1+X) / ((1-X) * (1 - p*X)^2))[n], ", ")) \\ Vaclav Kotesovec, Sep 15 2023
    
  • Python
    from sympy import divisors, primefactors, prod, reduced_totient, divisor_sigma
    def psi(n):
        return n*prod(p+1 for p in primefactors(n))//prod(primefactors(n))
    def a(n): return sum(divisor_sigma(d, 1) * psi(n//d) for d in divisors(n))

Formula

a(n) = Sum{d|n} A000203(d) * A001615(n/d).
a(p) = A365647(p) + 2 = A365648(p) + 2 where p is a term of A000040.
Multiplicative with a(p^e) = (2 + ((e+1)*p^2 - 2*p - e - 1)*p^e)/(p-1)^2. - Amiram Eldar, Sep 15 2023
From Vaclav Kotesovec, Sep 15 2023: (Start)
Dirichlet g.f.: zeta(s)^2 * zeta(s-1)^2 / zeta(2*s).
Sum_{k=1..n} a(k) ~ 5*n^2 * (log(n)/4 + gamma/2 - 1/8 + 3*zeta'(2)/Pi^2 - 45*zeta'(4)/Pi^4), where gamma is the Euler-Mascheroni constant A001620. (End)