A365656 Array T(n,k) read by antidiagonals (downward): T(n,1) = A005117(n) (squarefree numbers > 1); for k > 1, columns are nonsquarefree numbers (in descending order) with exactly the same prime factors as T(n,1).
1, 2, 4, 3, 8, 9, 5, 16, 27, 25, 6, 32, 81, 125, 12, 7, 64, 243, 625, 18, 49, 10, 128, 729, 3125, 24, 343, 20, 11, 256, 2187, 15625, 36, 2401, 40, 121, 13, 512, 6561, 78125, 48, 16807, 50, 1331, 169, 14, 1024, 19683, 390625, 54, 117649, 80, 14641, 2197, 28, 15
Offset: 0
Examples
Table T(n,k) for n = 1..12 and k = 1..6 shown below: n\k | 1 2 3 4 5 6 ... ---------------------------------------------- 1 | 1 2 | 2 4 8 16 32 64 3 | 3 9 27 81 243 729 4 | 5 25 125 625 3125 15625 5 | 6 12 18 24 36 48 6 | 7 49 343 2401 16807 117649 7 | 10 20 40 50 80 100 8 | 11 121 1331 14641 161051 1771561 9 | 13 169 2197 28561 371293 4826809 10 | 14 28 56 98 112 196 11 | 15 45 75 135 225 375 12 | 17 289 4913 83521 1419857 24137569 ... Triangle begins: 1; 2; 4, 3; 8, 9, 5; 16, 27, 25, 6; 32, 81, 125, 12, 7; 64, 243, 625, 18, 49, 10; ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11326 (rows 0..150, flattened)
- Michael De Vlieger, Log log scatterplot of log_10(a(n)), n = 1..64981 (i.e., 360 rows, flattened).
- Michael De Vlieger, Log log scatterplot of log_10(a(n)), n = 1..4096, showing primes in red, squarefree composites in green, composite prime powers in gold, and numbers neither squarefree nor prime powers in blue and purple; we show squareful numbers that are not prime powers in purple.
Programs
-
Mathematica
f[n_, k_ : 1] := Block[{c = 0, s = Sign[k], m}, m = n + s; While[c < Abs[k], While[! SquareFreeQ@ m, If[s < 0, m--, m++]]; If[s < 0, m--, m++]; c++]; m + If[s < 0, 1, -1] ] (* after Robert G.Wilson v at A005117 *); T[n_, k_] := T[n, k] = Which[And[n == 1, k == 1], 2, k == 1, f@T[n - 1, k], PrimeQ@ T[n, 1], T[n, 1]^k, True, Module[{j = T[n, k - 1]/T[n, 1] + 1}, While[PowerMod[T[n, 1], j, j] != 0, j++]; j T[n, 1]]]; {1}~Join~ Table[T[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // TableForm
Formula
For prime n = p, T(p,k) = p^k.
Comments