This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365660 #17 Sep 21 2023 11:11:01 %S A365660 1,1,1,3,2,6,6,16,12,20,26,59,45,79,94,186,142,231,244,442,470,616, %T A365660 746,1340,1053,1548,1852,2780,2826,3874,4320,6617,6286,7924,9178, %U A365660 13180,13634,17494,20356,28220,29176,37188,41932,56037 %N A365660 Number of integer partitions of 2n with exactly n distinct sums of nonempty submultisets. %C A365660 Are n = 1, 2, 4 the only n such that none of these partitions has 1? %C A365660 Are n = 2, 4, 5, 8, 9 the only n such that none of these partitions is strict? %e A365660 The partition (433) has sums 3, 4, 6, 7, 10 so is counted under a(5). %e A365660 The a(1) = 1 through a(7) = 16 partitions: %e A365660 (2) (2,2) (4,2) (4,2,2) (4,3,3) (6,4,2) (6,5,3) %e A365660 (5,1) (2,2,2,2) (4,4,2) (6,5,1) (8,4,2) %e A365660 (2,2,2) (6,2,2) (4,4,2,2) (8,5,1) %e A365660 (8,1,1) (6,2,2,2) (9,3,2) %e A365660 (4,2,2,2) (4,2,2,2,2) (9,4,1) %e A365660 (2,2,2,2,2) (2,2,2,2,2,2) (10,3,1) %e A365660 (11,2,1) %e A365660 (4,4,4,2) %e A365660 (5,3,3,3) %e A365660 (6,4,2,2) %e A365660 (8,2,2,2) %e A365660 (11,1,1,1) %e A365660 (4,4,2,2,2) %e A365660 (6,2,2,2,2) %e A365660 (4,2,2,2,2,2) %e A365660 (2,2,2,2,2,2,2) %t A365660 msubs[y_]:=primeMS/@Divisors[Times@@Prime/@y]; %t A365660 Table[Length[Select[IntegerPartitions[2n], Length[Union[Total/@Rest[msubs[#]]]]==n&]],{n,0,10}] %o A365660 (Python) %o A365660 from collections import Counter %o A365660 from sympy.utilities.iterables import partitions, multiset_combinations %o A365660 def A365660(n): %o A365660 c = 0 %o A365660 for p in partitions(n<<1): %o A365660 q, s = list(Counter(p).elements()), set() %o A365660 for l in range(1,len(q)+1): %o A365660 for k in multiset_combinations(q,l): %o A365660 s.add(sum(k)) %o A365660 if len(s) > n: %o A365660 break %o A365660 else: %o A365660 continue %o A365660 break %o A365660 if len(s)==n: %o A365660 c += 1 %o A365660 return c # _Chai Wah Wu_, Sep 20 2023 %Y A365660 For n instead of 2n we have A126796. %Y A365660 Central column n = 2k of A365658. %Y A365660 A000009 counts subsets summing to n. %Y A365660 A000124 counts distinct possible sums of subsets of {1..n}. %Y A365660 A002219 counts partitions of 2n with a submultiset summing to n. %Y A365660 A046663 counts partitions of n w/o a submultiset of sum k, strict A365663. %Y A365660 A122768 counts distinct nonempty submultisets of partitions. %Y A365660 A299701 counts sums of submultisets of prime indices, of partitions A304792. %Y A365660 A364272 counts sum-full strict partitions, sum-free A364349. %Y A365660 A365543 counts partitions of n w/ a submultiset of sum k, strict A365661. %Y A365660 Cf. A000041, A008967, A095944, A364911, A365376, A365377. %K A365660 nonn,more %O A365660 0,4 %A A365660 _Gus Wiseman_, Sep 16 2023 %E A365660 a(21)-a(38) from _Chai Wah Wu_, Sep 20 2023 %E A365660 a(39)-a(43) from _Chai Wah Wu_, Sep 21 2023