cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365661 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with a submultiset summing to k.

This page as a plain text file.
%I A365661 #11 Apr 05 2025 23:17:49
%S A365661 1,1,1,1,0,1,2,1,1,2,2,1,0,1,2,3,1,1,1,1,3,4,2,2,1,2,2,4,5,2,2,2,2,2,
%T A365661 2,5,6,3,2,3,1,3,2,3,6,8,3,3,4,3,3,4,3,3,8,10,5,4,5,4,3,4,5,4,5,10,12,
%U A365661 5,5,5,5,5,5,5,5,5,5,12
%N A365661 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with a submultiset summing to k.
%C A365661 First differs from A284593 at T(6,3) = 1, A284593(6,3) = 2.
%C A365661 Rows are palindromic.
%C A365661 Are there only two zeros in the whole triangle?
%H A365661 Robert Price, <a href="/A365661/b365661.txt">Table of n, a(n) for n = 0..1325</a>
%e A365661 Triangle begins:
%e A365661   1
%e A365661   1  1
%e A365661   1  0  1
%e A365661   2  1  1  2
%e A365661   2  1  0  1  2
%e A365661   3  1  1  1  1  3
%e A365661   4  2  2  1  2  2  4
%e A365661   5  2  2  2  2  2  2  5
%e A365661   6  3  2  3  1  3  2  3  6
%e A365661   8  3  3  4  3  3  4  3  3  8
%e A365661 Row n = 6 counts the following strict partitions:
%e A365661   (6)      (5,1)    (4,2)    (3,2,1)  (4,2)    (5,1)    (6)
%e A365661   (5,1)    (3,2,1)  (3,2,1)           (3,2,1)  (3,2,1)  (5,1)
%e A365661   (4,2)                                                 (4,2)
%e A365661   (3,2,1)                                               (3,2,1)
%e A365661 Row n = 10 counts the following strict partitions:
%e A365661   A     91    82    73    64    532   64    73    82    91    A
%e A365661   64    541   532   532   541   541   541   532   532   541   64
%e A365661   73    631   721   631   631   4321  631   631   721   631   73
%e A365661   82    721   4321  721   4321        4321  721   4321  721   82
%e A365661   91    4321        4321                    4321        4321  91
%e A365661   532                                                         532
%e A365661   541                                                         541
%e A365661   631                                                         631
%e A365661   721                                                         721
%e A365661   4321                                                        4321
%t A365661 Table[Length[Select[Select[IntegerPartitions[n], UnsameQ@@#&], MemberQ[Total/@Subsets[#],k]&]], {n,0,10},{k,0,n}]
%Y A365661 Columns k = 0 and k = n are A000009.
%Y A365661 The non-strict complement is A046663, central column A006827.
%Y A365661 Central column n = 2k is A237258.
%Y A365661 For subsets instead of partitions we have A365381.
%Y A365661 The non-strict case is A365543.
%Y A365661 The complement is A365663.
%Y A365661 A000124 counts distinct possible sums of subsets of {1..n}.
%Y A365661 A364272 counts sum-full strict partitions, sum-free A364349.
%Y A365661 Cf. A002219, A108796, A108917, A122768, A275972, A299701, A304792, A364916, A365311, A365376, A365541.
%K A365661 nonn,tabl
%O A365661 0,7
%A A365661 _Gus Wiseman_, Sep 16 2023