cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365662 Number of ordered pairs of disjoint strict integer partitions of n.

This page as a plain text file.
%I A365662 #14 Apr 24 2025 06:23:37
%S A365662 1,0,0,2,2,6,8,14,18,32,42,66,92,136,190,280,374,532,744,1014,1366,
%T A365662 1896,2512,3384,4526,6006,7910,10496,13648,17842,23338,30116,38826,
%U A365662 50256,64298,82258,105156,133480,169392,214778,270620,340554,428772,536302,670522
%N A365662 Number of ordered pairs of disjoint strict integer partitions of n.
%C A365662 Also the number of ways to first choose a strict partition of 2n, then a subset of it summing to n.
%H A365662 Vaclav Kotesovec, <a href="/A365662/b365662.txt">Table of n, a(n) for n = 0..1000</a>
%F A365662 a(n) = 2*A108796(n) for n > 1.
%F A365662 a(n) = [(x*y)^n] Product_{k>=1} (1 + x^k + y^k). - _Ilya Gutkovskiy_, Apr 24 2025
%e A365662 The a(0) = 1 through a(7) = 14 pairs:
%e A365662   ()()  .  .  (21)(3)  (31)(4)  (32)(5)   (42)(6)   (43)(7)
%e A365662               (3)(21)  (4)(31)  (41)(5)   (51)(6)   (52)(7)
%e A365662                                 (5)(32)   (6)(42)   (61)(7)
%e A365662                                 (5)(41)   (6)(51)   (7)(43)
%e A365662                                 (32)(41)  (321)(6)  (7)(52)
%e A365662                                 (41)(32)  (42)(51)  (7)(61)
%e A365662                                           (51)(42)  (421)(7)
%e A365662                                           (6)(321)  (43)(52)
%e A365662                                                     (43)(61)
%e A365662                                                     (52)(43)
%e A365662                                                     (52)(61)
%e A365662                                                     (61)(43)
%e A365662                                                     (61)(52)
%e A365662                                                     (7)(421)
%t A365662 Table[Length[Select[Tuples[Select[IntegerPartitions[n], UnsameQ@@#&],2], Intersection@@#=={}&]], {n,0,15}]
%t A365662 Table[SeriesCoefficient[Product[(1 + x^k + y^k), {k, 1, n}], {x, 0, n}, {y, 0, n}], {n, 0, 50}] (* _Vaclav Kotesovec_, Apr 24 2025 *)
%Y A365662 For subsets instead of partitions we have A000244, non-disjoint A000302.
%Y A365662 If the partitions can have different sums we get A032302.
%Y A365662 The non-strict version is A054440, non-disjoint A001255.
%Y A365662 The unordered version is A108796, non-strict A260669.
%Y A365662 A000041 counts integer partitions, strict A000009.
%Y A365662 A000124 counts distinct possible sums of subsets of {1..n}.
%Y A365662 A000712 counts distinct submultisets of partitions.
%Y A365662 A002219 and A237258 count partitions of 2n including a partition of n.
%Y A365662 A304792 counts subset-sums of partitions, positive A276024, strict A284640.
%Y A365662 A364272 counts sum-full strict partitions, sum-free A364349.
%Y A365662 Cf. A006827, A046663, A064914, A122768, A260664, A365661, A365663.
%K A365662 nonn
%O A365662 0,4
%A A365662 _Gus Wiseman_, Sep 19 2023