cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365663 Triangle read by rows where T(n,k) is the number of strict integer partitions of n without a subset summing to k.

This page as a plain text file.
%I A365663 #23 Apr 05 2025 23:17:57
%S A365663 1,1,1,1,2,1,2,2,2,2,2,2,3,2,2,3,3,3,3,3,3,3,4,3,5,3,4,3,5,5,4,5,5,4,
%T A365663 5,5,5,6,5,6,7,6,5,6,5,7,7,7,7,7,7,7,7,7,7,8,9,8,8,8,11,8,8,8,9,8,10,
%U A365663 11,10,10,10,10,10,10,10,10,11,10,12,13,11,13,11,12,15,12,11,13,11,13,12
%N A365663 Triangle read by rows where T(n,k) is the number of strict integer partitions of n without a subset summing to k.
%C A365663 Warning: Do not confuse with the non-strict version A046663.
%C A365663 Rows are palindromes.
%H A365663 Robert Price, <a href="/A365663/b365663.txt">Table of n, a(n) for n = 2..1226</a>
%H A365663 P. Erdős, J. L. Nicolas and A. Sárközy, <a href="http://dx.doi.org/10.1016/0012-365X(89)90086-1">On the number of partitions of n without a given subsum (I)</a>, Discrete Math., 75 (1989), 155-166 = Annals Discrete Math. Vol. 43, Graph Theory and Combinatorics 1988, ed. B. Bollobas.
%e A365663 Triangle begins:
%e A365663   1
%e A365663   1  1
%e A365663   1  2  1
%e A365663   2  2  2  2
%e A365663   2  2  3  2  2
%e A365663   3  3  3  3  3  3
%e A365663   3  4  3  5  3  4  3
%e A365663   5  5  4  5  5  4  5  5
%e A365663   5  6  5  6  7  6  5  6  5
%e A365663   7  7  7  7  7  7  7  7  7  7
%e A365663   8  9  8  8  8 11  8  8  8  9  8
%e A365663 Row n = 8 counts the following strict partitions:
%e A365663   (8)    (8)      (8)    (8)      (8)    (8)      (8)
%e A365663   (6,2)  (7,1)    (7,1)  (7,1)    (7,1)  (7,1)    (6,2)
%e A365663   (5,3)  (5,3)    (6,2)  (6,2)    (6,2)  (5,3)    (5,3)
%e A365663          (4,3,1)         (5,3)           (4,3,1)
%e A365663                          (5,2,1)
%t A365663 Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&FreeQ[Total/@Subsets[#],k]&]], {n,2,15},{k,1,n-1}]
%Y A365663 Columns k = 0 and k = n are A025147.
%Y A365663 The non-strict version is A046663, central column A006827.
%Y A365663 Central column n = 2k is A321142.
%Y A365663 The complement for subsets instead of strict partitions is A365381.
%Y A365663 The complement is A365661, non-strict A365543, central column A237258.
%Y A365663 Row sums are A365922.
%Y A365663 A000009 counts subsets summing to n.
%Y A365663 A000124 counts distinct possible sums of subsets of {1..n}.
%Y A365663 A124506 appears to count combination-free subsets, differences of A326083.
%Y A365663 A364272 counts sum-full strict partitions, sum-free A364349.
%Y A365663 A364350 counts combination-free strict partitions, complement A364839.
%Y A365663 Cf. A002219, A108796, A108917, A122768, A275972, A299701, A304792, A364916, A365311, A365376, A365541.
%K A365663 nonn,tabl
%O A365663 2,5
%A A365663 _Gus Wiseman_, Sep 17 2023