This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A365663 #23 Apr 05 2025 23:17:57 %S A365663 1,1,1,1,2,1,2,2,2,2,2,2,3,2,2,3,3,3,3,3,3,3,4,3,5,3,4,3,5,5,4,5,5,4, %T A365663 5,5,5,6,5,6,7,6,5,6,5,7,7,7,7,7,7,7,7,7,7,8,9,8,8,8,11,8,8,8,9,8,10, %U A365663 11,10,10,10,10,10,10,10,10,11,10,12,13,11,13,11,12,15,12,11,13,11,13,12 %N A365663 Triangle read by rows where T(n,k) is the number of strict integer partitions of n without a subset summing to k. %C A365663 Warning: Do not confuse with the non-strict version A046663. %C A365663 Rows are palindromes. %H A365663 Robert Price, <a href="/A365663/b365663.txt">Table of n, a(n) for n = 2..1226</a> %H A365663 P. Erdős, J. L. Nicolas and A. Sárközy, <a href="http://dx.doi.org/10.1016/0012-365X(89)90086-1">On the number of partitions of n without a given subsum (I)</a>, Discrete Math., 75 (1989), 155-166 = Annals Discrete Math. Vol. 43, Graph Theory and Combinatorics 1988, ed. B. Bollobas. %e A365663 Triangle begins: %e A365663 1 %e A365663 1 1 %e A365663 1 2 1 %e A365663 2 2 2 2 %e A365663 2 2 3 2 2 %e A365663 3 3 3 3 3 3 %e A365663 3 4 3 5 3 4 3 %e A365663 5 5 4 5 5 4 5 5 %e A365663 5 6 5 6 7 6 5 6 5 %e A365663 7 7 7 7 7 7 7 7 7 7 %e A365663 8 9 8 8 8 11 8 8 8 9 8 %e A365663 Row n = 8 counts the following strict partitions: %e A365663 (8) (8) (8) (8) (8) (8) (8) %e A365663 (6,2) (7,1) (7,1) (7,1) (7,1) (7,1) (6,2) %e A365663 (5,3) (5,3) (6,2) (6,2) (6,2) (5,3) (5,3) %e A365663 (4,3,1) (5,3) (4,3,1) %e A365663 (5,2,1) %t A365663 Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&FreeQ[Total/@Subsets[#],k]&]], {n,2,15},{k,1,n-1}] %Y A365663 Columns k = 0 and k = n are A025147. %Y A365663 The non-strict version is A046663, central column A006827. %Y A365663 Central column n = 2k is A321142. %Y A365663 The complement for subsets instead of strict partitions is A365381. %Y A365663 The complement is A365661, non-strict A365543, central column A237258. %Y A365663 Row sums are A365922. %Y A365663 A000009 counts subsets summing to n. %Y A365663 A000124 counts distinct possible sums of subsets of {1..n}. %Y A365663 A124506 appears to count combination-free subsets, differences of A326083. %Y A365663 A364272 counts sum-full strict partitions, sum-free A364349. %Y A365663 A364350 counts combination-free strict partitions, complement A364839. %Y A365663 Cf. A002219, A108796, A108917, A122768, A275972, A299701, A304792, A364916, A365311, A365376, A365541. %K A365663 nonn,tabl %O A365663 2,5 %A A365663 _Gus Wiseman_, Sep 17 2023